spark中常用转换操作keys 、values和mapValues


1.keys

功能:

  返回所有键值对的key

示例

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.keys.collect.foreach(println)

结果

hadoop
spark
hive
spark
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[142] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[143] at map at command-3434610298353610:3

2.values

功能:

  返回所有键值对的value

示例

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.values.collect.foreach(println)

结果

1
1
1
1
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[145] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[146] at map at command-3434610298353610:3

3.mapValues(func)

功能:

  对键值对每个value都应用一个函数,但是,key不会发生变化。

示例 

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.mapValues(_+1).collect.foreach(println)//对每个value进行+1

结果

(hadoop,2)
(spark,2)
(hive,2)
(spark,2)



免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM