异常监测的要点:1. 适用于数据集符合某种分布,能够转换为某种分布也算,比如车的航行轨迹,就不能用这招。 2. 或者使用阈值设定,结合逻辑回归设定异常,也可以。3. 在数据集中,异常数据点非常少,1%都算多。
在实战中,需要结合实际情况调用包。
数据集
链接:https://pan.baidu.com/s/1IU6sG2LHrVxHE2e51I0SHw
提取码:0ihl
代码
import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.io as spio def display_2d_data(X,marker): #plt.figure(figsize=(10,8)) plt.plot(X[:,0],X[:,1],marker) return plt def estimateGaussian(X): #求均值与方差 m,n = X.shape mu = np.zeros((n,1)) sigma2 = np.zeros((n,1)) mu = np.mean(X,axis = 0) sigma2 = np.var(X,axis = 0) * (m-1) / m # 在概率论中计算sigma2时,除以的是(1-m),机器学习中,除以(1-m)和除以m的差别不大 return mu,sigma2 def multivariateGaussian(X,mu,Sigma2): k = len(mu) if (Sigma2.shape[0]>1): Sigma2 = np.diag(Sigma2) '''多元高斯分布函数''' X = X-mu argu = (2*np.pi)**(-k/2)*np.linalg.det(Sigma2)**(-0.5) p = argu*np.exp(-0.5*np.sum(np.dot(X,np.linalg.inv(Sigma2))*X,axis=1)) # axis表示每行 return p def visualizeFit(X,mu,sigma2): x = np.arange(0, 36, 0.5) # 0-36,步长0.5 y = np.arange(0, 36, 0.5) X1,X2 = np.meshgrid(x,y) # 要画等高线,所以meshgird Z = multivariateGaussian(np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))), mu, sigma2) # 计算对应的高斯分布函数 Z = Z.reshape(X1.shape) # 调整形状 plt.figure(figsize=(10,8)) plt.plot(X[:,0],X[:,1],'bx') if np.sum(np.isinf(Z).astype(float)) == 0: # 如果计算的为无穷,就不用画了 #plt.contourf(X1,X2,Z,10.**np.arange(-20, 0, 3),linewidth=.5) CS = plt.contour(X1,X2,Z,10.**np.arange(-20, 0, 3),color='black',linewidth=.5) # 画等高线,Z的值在10.**np.arange(-20, 0, 3) #plt.clabel(CS) plt.show() # 选择最优的epsilon,即:使F1Score最大 def selectThreshold(yval,pval): '''初始化所需变量''' bestEpsilon = 0. bestF1 = 0. F1 = 0. step = (np.max(pval)-np.min(pval))/1000 '''计算''' for epsilon in np.arange(np.min(pval),np.max(pval),step): cvPrecision = pval<epsilon tp = np.sum((cvPrecision == 1) & (yval == 1).ravel()).astype(float) # sum求和是int型的,需要转为float fp = np.sum((cvPrecision == 1) & (yval == 0).ravel()).astype(float) fn = np.sum((cvPrecision == 0) & (yval == 1).ravel()).astype(float) precision = tp/(tp+fp) # 精准度 recision = tp/(tp+fn) # 召回率 F1 = (2*precision*recision)/(precision+recision) # F1Score计算公式 if F1 > bestF1: # 修改最优的F1 Score bestF1 = F1 bestEpsilon = epsilon return bestEpsilon,bestF1 def AnomalyDetection2(): data = spio.loadmat("data2.mat") X = data['X'] Xval = data['Xval'] yval = data['yval'] #print(pd.DataFrame(X)) mu,sigma2 = estimateGaussian(X) #print(mu,sigma2) p = multivariateGaussian(X,mu,sigma2) #print(pd.DataFrame(p)) pval = multivariateGaussian(Xval,mu,sigma2) epsilon,F1 = selectThreshold(yval,pval) print("the best epsilon is ",epsilon) print("the best F1 is ",F1) print("Outliers found",np.sum(p < epsilon)) AnomalyDetection2() def AnomalyDetection(): data = spio.loadmat("data.mat") #print(data) X = data['X'] Xval = data['Xval'] yval = data['yval'] # y = 1 为异常 #plt.plot(X[:,0],X[:,1],'x') plt = display_2d_data(X,'x') plt.title("Origin data") plt.show() mu,sigma2 = estimateGaussian(X) #print(mu,sigma2) p = multivariateGaussian(X,mu,sigma2) #print(p) visualizeFit(X,mu,sigma2) # 显示图像 # 选择异常点 pval = multivariateGaussian(Xval,mu,sigma2) epsilon,F1 = selectThreshold(yval,pval) print(u'在CV上得到的最好的epsilon是:%e'%epsilon) print(u'对应的F1Score值为:%f'%F1) outliers = np.where(p<epsilon) # 找到小于临界值的异常点,并作图 #plt.figure(figsize=(10,8)) plt.plot(X[outliers,0],X[outliers,1],'o',markeredgecolor='r',markerfacecolor='w',markersize=10.) plt = display_2d_data(X, 'bx') plt.show() if __name__ == "__main__": AnomalyDetection()