题解 CF1292A 【NEKO's Maze Game】


有一个结论:

\((1,1)\) 不能抵达 \((2,n)\) 时,必定存在一个点对,这两个点的值均为真,且坐标中的 \(x\) 互异,\(y\) 的差 \(\leq 1\)

这个结论的正确性感觉非常显然,就不多说了。

下图可以形象地解释点对的位置关系。

那对于每个点的值,只要开一个数组 f[i][j] 记录一下即可。


有了上述结论,我们记一个变量 \(cnt\) 表示 " 有多少对满足上述结论的点对 " ,则 \(cnt=0\) 时,\((1,1)\) 可以抵达 \((2,n)\) ,反之不可抵达。重点在于如何维护 \(cnt\)

对于每次反转的点 \((x,y)\) ,我们都需要往 \(cnt\) 里 扣除 \(/\) 补上 \((x,y)\) 的贡献,具体的:(为了方便异或 \(x\)\(0\)\(1\)

\(f[x][y]=1\) ,令 \(cnt-=f[x \ xor \ 1][y-1]+f[x \ xor \ 1][y]+f[x \ xor \ 1][y+1]\)\(f[x][y]=0\)

\(f[x][y]=0\) ,令 \(cnt+=f[x \ xor \ 1][y-1]+f[x \ xor \ 1][y]+f[x \ xor \ 1][y+1]\)\(f[x][y]=1\)

这样就可以起到维护 \(cnt\) 的效果了,时间复杂度 \(O(n)\)


Code 部分

#include<cstdio>

#define RI rgeister int

using namespace std;

inline int read()
{
	int x=0,f=1;char s=getchar();
	while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
	while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
	return x*f;
}

const int N=100100;

int n,q;

int f[2][N];

int cnt;

int main()
{
	n=read(),q=read();

	while(q--)
	{
		int x=read()-1,y=read();
		switch(f[x][y])
		{
			case 1:{
				cnt-=f[x^1][y-1]+f[x^1][y]+f[x^1][y+1];
				f[x][y]=0;
				break;
			}

			case 0:{
				cnt+=f[x^1][y-1]+f[x^1][y]+f[x^1][y+1];
				f[x][y]=1;
				break;
			}
		}

		puts(!cnt?"Yes":"No");
	}

	return 0; 
}

\[thanks \ for \ watching \]


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM