You are given n arrays a1, a2, ..., an; each array consists of exactly m integers. We denote the y-th element of the x-th array as ax,y. You have to choose two arrays ai and aj (1≤i,j≤n, it is possible that i=j). After that, you will obtain a new array b consisting of m integers, such that for every k∈[1,m] bk=max(ai,k,aj,k). Your goal is to choose i and j so that the value of mink=1mbk is maximum possible. Input The first line contains two integers n and m (1≤n≤3⋅105, 1≤m≤8) — the number of arrays and the number of elements in each array, respectively. Then n lines follow, the x-th line contains the array ax represented by m integers ax,1, ax,2, ..., ax,m (0≤ax,y≤109). Output Print two integers i and j (1≤i,j≤n, it is possible that i=j) — the indices of the two arrays you have to choose so that the value of mink=1mbk is maximum possible. If there are multiple answers, print any of them. Example inputCopy 6 5
5 0 3 1 2
1 8 9 1 3
1 2 3 4 5
9 1 0 3 7
2 3 0 6 3
6 4 1 7 0 outputCopy 1 5
如何获得这个最小值的最大值,暴力必T,可以试着二分。
而二分的check如何判断
check(x)思路,把数组转化成二进制形式,如果当前为大于x,则改位二进制数为1,否则为零,最后的到的二进制数即可替代数组,且他最大为255
然后暴力循环。

#include<iostream> #include<cstring> #include<algorithm> #include<cstdio> #include<cmath> #include<vector> #include<queue> #define ll long long const int inf=0x3f3f3f3f; using namespace std; const int N=3e5+5; int vis[260]; int a[N][10]; int n,m; int x,y; bool check(int key) { //printf("debug\n"); int t; memset(vis,0,sizeof vis); for(int i=1;i<=n;i++) { t=0; for(int j=1;j<=m;j++) { if(a[i][j]>=key) { t|=1<<(j-1); } } //printf("%d\n",t); vis[t]=i; } for(int i=0;i<=256;i++) { for(int j=0;j<=256;j++) { if(vis[i]&&vis[j]&&((i|j)==((1<<m)-1))) { x=vis[i]; y=vis[j]; //printf("debug\n"); return true; } } } return false; } int main() { scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { scanf("%d",&a[i][j]); } } int l=0,r=1e9; while(l<=r) { int mid=(l+r)>>1; if(check(mid)) { l=mid+1; } else r=mid-1; } printf("%d %d\n",x,y); return 0; }