CNN中的low-level feature 与high-level feature


  • low-level feature:通常是指图像中的一些小的细节信息,例如边缘(edge),角(corner), 颜色(color),像素(pixels),梯度(gradients)等,这些信息可以通过滤波器、SIFT或HOG获取;
  • hight-level feature:是建立在low level feature之上的,可以用于图像中目标或物体形状的识别和检测,具有更丰富的语义信息。

通常卷积神经网络中都会使用这两种类型的features:卷积神经网络的前几层学习Low level feature, 后几层学习的是high level feature.

 

Quora上面也有这么一段解释:

Low-level features are minor details of the image, like lines or dots, that can be pickup by , say, a  convolutional filter (for reaaly low-level things) or SIFT or HOG (for more abstract things like edges). 

High levle features are built on top of low-level features to detect objects and shapes in the image.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM