邻接矩阵


(以下图为例子)采用邻接矩阵的方法定义图的数据结构,并实现图的深度优先周游算法。

1.首先先定义并实现图的边Edge类,Edge类中的成员变量有:from->起点 to->终点 weight->权值(权值初始化为0)

Edge.h

 1 class Edge  2 {  3 public:  4 int from, to, weight;  5 public:  6  Edge() {  7 from = -1;  8 to = -1;  9 weight = 0; 10  } 11 12 Edge(int f, int t, int w){ 13 from = f; 14 to = t; 15 weight = w; 16  } 17 ~Edge() {} 18 };

 

2.定义图的基类,便于邻接矩阵的继承

Graph.h

 1 #include "Edge.h"  2 class Graph  3 {  4 protected:  5 const int UNVISITED;  6 const int VISITED;  7 public:  8 int numVertex; //图中顶点的总个数  9 int numEdge; //边数 10 int *Mark; //标记 11 //int *Indegree; //存放图中顶点的入度 12 public: 13 bool IsEdge(Edge oneEdge); //判断是否为边 14 Graph(int numVertex); 15 ~Graph(); 16 };

Graph.cpp

 1 #include "Graph.h"  2  3 Graph::Graph(int numVertex):UNVISITED(0),VISITED(1){  4 this->numVertex = numVertex;  5 this->numEdge = 0; //初始化顶点数为0  6 this->Mark = new int [numVertex]; //为标记数组动态分配空间  7 //this->Indegree = new int [numVertex];   8  9 for (int i = 0; i < numVertex; i++) 10  { 11 Mark[i] = UNVISITED; //将全部点初始化为未访问 12 //Indegree[i] = 0; 13  } 14 } 15 16 Graph::~Graph(){ 17  delete []Mark; 18 //delete []Indegree; 19 } 20 21 bool Graph::IsEdge(Edge oneEdge){ 22 if (oneEdge.weight > 0 && oneEdge.to >= 0) 23  { 24 return true; 25  } 26 else return false; 27 }

 

3.定义Graph类的子类,将图转换为邻接矩阵

tips:  Initialize函数形参中的*pWArray2D传进的是一个二维数组。

Graphm.h

 

 1 #include "Graph.cpp"  2  3 class Graphm:public Graph  4 {  5 private:  6 int **matrix; //指向邻接矩阵的指针  7 public:  8 Edge FirstEdge(int oneVertex); //返回以oneVertex为顶点的第一条Edge  9 Edge NextEdge(Edge preEdge); //返回与preEdge有相同顶点的下一条边 10 void setEdge(int from,int to,int weigth); //设置边 11 void delEdge(int from,int to); //删除边 12 void Initialize(Graphm *Graphm,int *pWArray2D ); //初始化图 13 void Visited(Graphm &M,int v); //输出访问过的点 14 void DFS(Graphm &M,int v); //深度优先周游 15 int ToVertex(Edge oneEdge); //返回边的终点 16 void Travel(Graphm &G,int startVertex); //周游全图 17 Graphm(int numVertex); 18 ~Graphm(); 19 };

 

Graphm.cpp

 1 #include "Graphm.h"  2 #include <iostream>  3 using namespace std;  4  5 //构造函数  6 Graphm::Graphm(int numVertex):Graph(numVertex){  7 int i,j;  8 matrix = (int **)new int *[numVertex]; //申请matrix数组行向量数组  9  10 for (i = 0; i < numVertex; i++){  11 matrix[i] = new int[numVertex]; //申请行的存储空间(列向量)  12  }  13  14 for (i = 0; i < numVertex; i++){  15 for (j = 0; j < numVertex; j++){  16 matrix[i][j] = 0;  17  }  18  }  19 cout << "构造函数执行!" << endl;  20 }  21 //析构函数释放二维数组的动态分配的空间  22 Graphm::~Graphm(){  23 for (int i = 0; i < numVertex; i++)  24  {  25  delete [] matrix[i];  26  }  27  delete [] matrix;  28 cout << "释放空间成功!" << endl;  29 }  30 //初始化图  31 void Graphm::Initialize(Graphm *Graphm,int *pWArray2D){  32 cout << "开始初始化!" << endl;  33 int N = numVertex;  34 int array_i_j = 0;  35 for (int i = 0; i < N; i++)  36  {  37 for (int j = 0; j < N; j++)  38  {  39 array_i_j = *(pWArray2D + i*N + j); //获得二维数组中每一个元素的值  40 //cout << array_i_j << endl;  41 if (array_i_j > 0) //当元素的值大于0时,证明有从i指向j的边  42  {  43 Graphm->setEdge(i,j,array_i_j); //设置边  44  }  45  }  46  }  47 cout << "初始化成功!" << endl;  48 /*for (int i = 0; i < numVertex; i++)  49  {  50  for (int j = 0; j < numVertex; j++)  51  {  52  cout << matrix[i][j] << " ";  53  }  54  cout << endl;  55  56  }*/  57 }  58 //返回以oneVertex为顶点的第一条Edge  59 Edge Graphm::FirstEdge(int oneVertex){  60  Edge myEdge;  61 myEdge.from = oneVertex;  62  63 for (int i = 0; i < numVertex; i++)  64  {  65 if (matrix[oneVertex][i] != 0)  66  {  67 myEdge.to = i;  68 myEdge.weight = matrix[oneVertex][i];  69 break;  70  }  71  }  72 return myEdge;  73 }  74 //返回与preEdge有相同顶点的下一条Edge  75 Edge Graphm::NextEdge(Edge preEdge){  76  Edge myEdge;  77 myEdge.from = preEdge.from;  78 if (preEdge.to+1 < numVertex)  79  {  80 for (int i = preEdge.to+1; i < numVertex; i++)  81  {  82 if (matrix[preEdge.from][i] != 0)  83  {  84 myEdge.to = i;  85 myEdge.weight = matrix[preEdge.from][i];  86 break;  87  }  88  }  89  }  90 return myEdge;  91 }  92 //为图设置边  93 void Graphm::setEdge(int from,int to,int weigth){  94 if (matrix[from][to] <= 0)  95  {  96 numEdge++; //边的个数加1  97 //Indegree[to]++;  98  }  99 matrix[from][to] = weigth; 100 } 101 //删除边 102 void Graphm::delEdge(int from,int to){ 103 if (matrix[from][to] > 0) 104  { 105 numEdge--; //边的个数减1 106 //Indegree[to]--; 107  } 108 matrix[from][to] = 0; 109 } 110 //输出访问过的点 111 void Graphm::Visited(Graphm &M,int v){ 112 cout << "v" << v << " "; 113 } 114 //返回边的终点 115 int Graphm::ToVertex(Edge oneEdge){ 116 return oneEdge.to; 117 } 118 //深度优先周游 119 void Graphm::DFS(Graphm &M,int v){ 120 M.Mark[v] = VISITED; 121  Visited(M,v); 122 for (Edge e = M.FirstEdge(v); M.IsEdge(e); e = M.NextEdge(e)) 123  { 124 if (M.Mark[M.ToVertex(e)] == UNVISITED) 125  { 126 //cout << M.ToVertex(e) << endl; 127  DFS(M,M.ToVertex(e)); 128  } 129  } 130 } 131 //周游完整的图 132 void Graphm::Travel(Graphm &G,int startVertex){ 133 DFS(G,startVertex); //不一定能周游每一个顶点 134 //更换顶点周游 135 for (int i = 0; i < numVertex; i++) 136  { 137 if (G.Mark[i] == UNVISITED) 138  { 139  DFS(G,i); 140  } 141  } 142 }

 

 

4.主函数的实现

tips: 先根据图画出邻接矩阵,再将邻接矩阵作为实参进行传递

Main.cpp

 1 #include "Graphm.cpp"  2 #define N 8  3 int main(int argc, char const *argv[])  4 {  5  6 //int N = 8;  7 int M[N][N] = {  8 0,0,0,1,0,0,0,0,  9 1,0,0,0,0,0,0,0, 10 1,1,0,0,0,0,0,1, 11 0,1,0,0,0,1,0,0, 12 0,0,1,0,0,0,0,0, 13 0,0,0,0,0,0,0,0, 14 0,0,0,0,1,1,0,0, 15 0,1,0,0,1,1,1,0 16  }; 17  Graphm G(N); 18 G.Initialize(&G,(int*)M); 19 cout << "全部深度周游:"; 20 21 G.Travel(G,3); 22 cout << endl; 23 24 return 0; 25 }

注:以下总结仅代表个人观点(如有错误,欢迎指出)

总结:1.将图写为基类在此处体现出来的意义其实并不大(在此题中完全可以将Graph类与Graphm类合并起来),但是也是为了养成良好的习惯。

   2.主函数中二维数组的传递值得一记,传递的过程将其当成一位数组进行传递。

   3.周游的过程中需要考虑到当图为不连通图时,以某个顶点为起点时可能周游出来的结果不完整(以上的Travvel函数则能周游出全部的点。

   4.熟练掌握根据图画出对应的邻接矩阵。

   5.无权图的权值可设为1。

   6.动态分配的空间记得手动释放,最好的做法是写在析构函数中。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM