【https://blog.csdn.net/u013921430 转载】
slim是一种轻量级的tensorflow库,可以使模型的构建,训练,测试都变得更加简单。在slim库中对很多常用的函数进行了定义,slim.arg_scope()是slim库中经常用到的函数之一。函数的定义如下;
-
@tf_contextlib.contextmanager
-
def arg_scope(list_ops_or_scope, **kwargs):
-
"""Stores the default arguments for the given set of list_ops.
-
-
For usage, please see examples at top of the file.
-
-
Args:
-
list_ops_or_scope: List or tuple of operations to set argument scope for or
-
a dictionary containing the current scope. When list_ops_or_scope is a
-
dict, kwargs must be empty. When list_ops_or_scope is a list or tuple,
-
then every op in it need to be decorated with @add_arg_scope to work.
-
**kwargs: keyword=value that will define the defaults for each op in
-
list_ops. All the ops need to accept the given set of arguments.
-
-
Yields:
-
the current_scope, which is a dictionary of {op: {arg: value}}
-
Raises:
-
TypeError: if list_ops is not a list or a tuple.
-
ValueError: if any op in list_ops has not be decorated with @add_arg_scope.
-
"""
-
if isinstance(list_ops_or_scope, dict):
-
# Assumes that list_ops_or_scope is a scope that is being reused.
-
if kwargs:
-
raise ValueError(
'When attempting to re-use a scope by suppling a'
-
'dictionary, kwargs must be empty.')
-
current_scope = list_ops_or_scope.copy()
-
try:
-
_get_arg_stack().append(current_scope)
-
yield current_scope
-
finally:
-
_get_arg_stack().pop()
-
else:
-
# Assumes that list_ops_or_scope is a list/tuple of ops with kwargs.
-
if
not isinstance(list_ops_or_scope, (list, tuple)):
-
raise TypeError(
'list_ops_or_scope must either be a list/tuple or reused'
-
'scope (i.e. dict)')
-
try:
-
current_scope = current_arg_scope().copy()
-
for op
in list_ops_or_scope:
-
key_op = _key_op(op)
-
if
not has_arg_scope(op):
-
raise ValueError(
'%s is not decorated with @add_arg_scope',
-
_name_op(op))
-
if key_op
in current_scope:
-
current_kwargs = current_scope[key_op].copy()
-
current_kwargs.update(kwargs)
-
current_scope[key_op] = current_kwargs
-
else:
-
current_scope[key_op] = kwargs.copy()
-
_get_arg_stack().append(current_scope)
-
yield current_scope
-
finally:
-
_get_arg_stack().pop()
如注释中所说,这个函数的作用是给list_ops中的内容设置默认值。但是每个list_ops中的每个成员需要用@add_arg_scope修饰才行。所以使用slim.arg_scope()有两个步骤:
- 使用@slim.add_arg_scope修饰目标函数
- 用 slim.arg_scope()为目标函数设置默认参数.
例如如下代码;首先用@slim.add_arg_scope修饰目标函数fun1(),然后利用slim.arg_scope()为它设置默认参数。
-
import tensorflow
as tf
-
slim =tf.contrib.slim
-
-
@slim.add_arg_scope
-
def fun1(a=0,b=0):
-
return (a+b)
-
-
with slim.arg_scope([fun1],a=
10):
-
x=fun1(b=
30)
-
print(x)
运行结果为:
40
平常所用到的slim.conv2d( ),slim.fully_connected( ),slim.max_pool2d( )等函数在他被定义的时候就已经添加了@add_arg_scope。以slim.conv2d( )为例;
-
@
add_arg_scope
-
def convolution(inputs,
-
num_outputs,
-
kernel_size,
-
stride=1,
-
padding='SAME',
-
data_format=None,
-
rate=1,
-
activation_fn=nn.relu,
-
normalizer_fn=None,
-
normalizer_params=None,
-
weights_initializer=initializers.xavier_initializer(),
-
weights_regularizer=None,
-
biases_initializer=init_ops.zeros_initializer(),
-
biases_regularizer=None,
-
reuse=None,
-
variables_collections=None,
-
outputs_collections=None,
-
trainable=True,
-
scope=None):
所以,在使用过程中可以直接slim.conv2d( )等函数设置默认参数。例如在下面的代码中,不做单独声明的情况下,slim.conv2d, slim.max_pool2d, slim.avg_pool2d三个函数默认的步长都设为1,padding模式都是'VALID'的。但是也可以在调用时进行单独声明。这种参数设置方式在构建网络模型时,尤其是较深的网络时,可以节省时间。
-
with slim.arg_scope(
-
[slim.conv2d, slim.max_pool2d, slim.avg_pool2d],stride =
1, padding =
'VALID'):
-
net = slim.conv2d(inputs,
32, [
3,
3], stride =
2, scope =
'Conv2d_1a_3x3')
-
net = slim.conv2d(net,
32, [
3,
3], scope =
'Conv2d_2a_3x3')
-
net = slim.conv2d(net,
64, [
3,
3], padding =
'SAME', scope =
'Conv2d_2b_3x3')
@修饰符
其实这种用法是python中常用到的。在python中@修饰符放在函数定义的上方,它将被修饰的函数作为参数,并返回修饰后的同名函数。形式如下;
-
@fun_a #等价于fun_a(fun_b)
-
def fun_b():
这在本质上讲跟直接调用被修饰的函数没什么区别,但是有时候也有用处,例如在调用被修饰函数前需要输出时间信息,我们可以在@后方的函数中添加输出时间信息的语句,这样每次我们只需要调用@后方的函数即可。
-
def funs(fun,factor=20):
-
x=fun()
-
print(factor*x)
-
-
-
@funs #等价funs(add(),fator=20)
-
def add(a=10,b=20):
-
return(a+b)