什么是红黑树?


什么是红黑树?

 

————————————

二叉查找树(BST)具备什么特性呢?

1.左子树上所有结点的值均小于或等于它的根结点的值。

2.右子树上所有结点的值均大于或等于它的根结点的值。

3.左、右子树也分别为二叉排序树。

下图中这棵树,就是一颗典型的二叉查找树:

1.查看根节点9:

2.由于10 > 9,因此查看右孩子13:

3.由于10 < 13,因此查看左孩子11:

4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:

假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:

接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成什么样呢?

1.节点是红色或黑色。

2.根节点是黑色。

3.每个叶子节点都是黑色的空节点(NIL节点)。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

下图中这棵树,就是一颗典型的红黑树:

什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?我们举两个简单的栗子:

在举例子之前,我们做一点小小的补充!

插入之前所有根至外部节点的路径上黑色节点数目都相同,所以如果插入的节点是黑色肯定错误(黑色节点数目不相同),

而相对的插入红节点可能会也可能不会违反“没有连续两个节点是红色”这一条件,所以插入的节点为红色,如果违反条件再调整

1.向原红黑树插入值为14的新节点:

2.向原红黑树插入值为21的新节点:

由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。

变色:

为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。

下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:

但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:

此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:

左旋转:

逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

右旋转:

顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

我们以刚才插入节点21的情况为例:

首先,我们需要做的是变色,把节点25及其下方的节点变色:

此时节点17和节点25是连续的两个红色节点,那么把节点17变成黑色节点?恐怕不合适。这样一来不但打破了规则4,而且根据规则2(根节点是黑色),也不可能把节点13变成红色节点。

变色已无法解决问题,我们把节点13看做X,把节点17看做Y,像刚才的示意图那样进行左旋转:

由于根节点必须是黑色节点,所以需要变色,变色结果如下:

这样就结束了吗?并没有。因为其中两条路径(17 -> 8 -> 6 -> NIL)的黑色节点个数是4,其他路径的黑色节点个数是3,不符合规则5。

这时候我们需要把节点13看做X,节点8看做Y,像刚才的示意图那样进行右旋转:

最后根据规则来进行变色:

如此一来,我们的红黑树变得重新符合规则。这一个例子的调整过程比较复杂,经历了如下步骤:

变色 -> 左旋转 -> 变色 -> 右旋转 -> 变色


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM