探索性因子分析


https://www.cnblogs.com/wentingtu/archive/2012/03/03/2377971.html

探索性因子分析

 
探索性因子分析(Exploratory Factor Analysis,EFA)是一项用来找出多元观测变量的本质结构、并进行处理降维的技术。 因而EFA能够将具有错综复杂关系的变量综合为少数几个核心因子。EFA和PCA的区别在于:PCA中的主成分是原始变量的线性组合,而EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,变量中不能被因子所解释的部分称为误差,因子和误差均不能直接观察到。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM