pandas df 遍历行方法


pandas 遍历有以下三种访法。 

  1. iterrows():在单独的变量中返回索引和行项目,但显着较慢 
  2. itertuples():快于.iterrows(),但将索引与行项目一起返回,ir [0]是索引 
  3. zip:最快,但不能访问该行的索引
df= pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})

 

 

0.for i in df:并不是遍历行的方式

for i in df:
    print(i)

 

 正式因为for in df不是直接遍历行的方式所以我们研究了如下方法。

1.iterrows():在单独的变量中返回索引和行项目,但显着较慢 

df.iterrows()其实返回也是一个tuple=>(索引,Series)
count=0
for i,r in df.iterrows():
    print(i,'-->',r,type(r))
    count+=1
    if count>5:
        break

 

 2.itertuples():快于.iterrows(),但将索引与行项目一起返回,ir [0]是索引

count=0
for tup in df.itertuples():
    print(tup[0],'-->',tup[1::],type(tup[1:]))
    count+=1
    if count>5:
        break

 

 3.zip:最快,但不能访问该行的索引

count=0
for tup in zip(df['a'], df['b']):
    print(tup,type(tup[1:]))
    count+=1
    if count>5:
        break 

 

 4.性能比较

 

df = pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})
import time
list1 = []
start = time.time()
for i,r in df.iterrows():
    list1.append((r['a'], r['b']))
print("iterrows耗时  :",time.time()-start)

list1 = []
start = time.time()
for ir in df.itertuples():
    list1.append((ir[1], ir[2]))    
print("itertuples耗时:",time.time()-start)

list1 = []
start = time.time()
for r in zip(df['a'], df['b']):
    list1.append((r[0], r[1]))
print("zip耗时       :",time.time()-start)

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM