tensorflow2.0手写数字识别


import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np


datapath  = r'D:\data\ml\mnist.npz'
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(datapath)

x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)


val_loss, val_acc = model.evaluate(x_test, y_test)
print(val_loss)
print(val_acc)

i = 103
plt.imshow(x_test[i],cmap=plt.cm.binary)
plt.show()

predictions = model.predict(x_test)
print(np.argmax(predictions[i]))

其中mnist.npz文件可以从google下载 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM