社交网络分析与挖掘 第四课:信息传播模型


Information Diffusion Models

Information Diffusion Categories

Influence Models (影响力模型)

  • Influence models model how users influence each other in a network.
  • Nodes are in two status:
    Inactive:the nodes do not receive the information
    Active:the nodes have received the information and can spread it to their neighbors

Independent Cascade (IC) 独立级联模型

  • Nodes activated at time t,have a single chance,at time step t+1,to activate their neighbors
  • Assume v is activated at time t,for any neighbor w of u,there is a probability p(vw) that node w gets activated at time t+1
  • IC Model:Algorithm
  • IC Model:Example

Linear Threshold (LT) 线性阈值模型

  • At each time step,the active nodes can influence the inactive nodes
  • Each node has an activation threshold
  • An inactive node becomes active if the sum of influence degrees exceeds its threshold
  • LT Model:Algorithm
  • LT Model:Example

Infection Models (感染性模型/病毒模型)

  • Infection Models, also called epidemic models, are
    used to describe the transmission of communicable
    disease through individuals
  • Nodes are in three status:
    • Susceptible:a susceptible node can potentially get
      infected by the disease
    • Infected: an infected node has the chance of infecting
      susceptible neighbors.
    • Recovered: These are nodes who have recovered from
      the disease and hence have complete or partial immunity against the infection.

Susceptible-Infected (SI)

  • Two status of nodes:
    • Susceptible(S)
    • Infected(I)
  • How to infect
    - Once a node is infected,it stays infected forever.
    - At each discrete time step,each infected node tries to infect its susceptible(uninfected)neighbors independently with probability p.

  • SI Model:notations
    • N:size of the crowd,N=S(t)+I(t)
    • S(t):number of susceptible ones at time t
    • I(t):number of infected ones at time t
  • SI Model:Example

Susceptible-Infecte-Recovered (SIR)

  • Intuition:Some infected nodes may recover,and the recovered ones can no longer get infected and are no longer susceptible.
  • Three status of nodes:Susceptible(S),Infected(T),Recovered(R)
  • The infection status of a node changes

    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
  • SIR Model:Example

Susceptible-Infected-Susceptible (SIS)

  • Intuition:the infected nodes may recover,and the recovered nodes would become susceptible again
  • Two status of nodes:Susceptible(S),Infected(I)
  • The infection status of a node changes

    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
  • SIS Model:Example

Susceptible-Infected-Recovered-Susceptible (SIRS)

  • Intuition:the individuals who have recovered will lose immunity after a certain period of time and will become susceptible again.
  • The infection status of a node changes

    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
    λ defines the probability of losing immunity for a recovered node
  • SIRS Model:Example

以上内容出自小象学院


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM