之前我们微生物生态网络基于igraph进行出图,这是基础包写的出图函数,近年来,随着ggplot的普及,使用ggplot出图似乎成了部分人的基本功,plot函数为代表的基本包已经很少有人去学习了。
为了减少学习成本,同时制作多样化程度和个性化程度更高的网络图,使用ggplot出图成了必然的选择,近年来很多人基于ggplot的版本的网络图进行了许多尝试,但是就微生物网络而言,这一方面使用基于ggplot为基础网络的人很少。
一方面因为转移成本问题,一方面因为展示样式问题。 慢慢的工作量积累够了:
16年gplot.layout的出现,使得ggplot网络可以扩展19中可视化方式。
ggplot出图数据为矩阵,依托于强大的数据框处理函数aplyr包,我们可以对网络进行个性化程度极高的设置,包括标签,图例,颜色,形状,大小。
这是google上的一个尝试
通过ggplot做出基本网络图形
suppressPackageStartupMessages(library(ggplot2)) suppressPackageStartupMessages(library(network)) suppressPackageStartupMessages(library(sna)) suppressPackageStartupMessages(library(ergm)) library(network) library(ggplot2) library(sna) library(ergm) plotg <- function(net, value = NULL) { m <- as.matrix.network.adjacency(net) # get sociomatrix # get coordinates from Fruchterman and Reingold's force-directed placement # algorithm. plotcord <- data.frame(gplot.layout.fruchtermanreingold(m, NULL)) # or get it them from Kamada-Kawai's algorithm: plotcord <- # data.frame(gplot.layout.kamadakawai(m, NULL)) colnames(plotcord) = c("X1", "X2") edglist <- as.matrix.network.edgelist(net) edges <- data.frame(plotcord[edglist[, 1], ], plotcord[edglist[, 2], ]) plotcord$elements <- as.factor(get.vertex.attribute(net, "elements")) colnames(edges) <- c("X1", "Y1", "X2", "Y2") edges$midX <- (edges$X1 + edges$X2)/2 edges$midY <- (edges$Y1 + edges$Y2)/2 pnet <- ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2), data = edges, size = 0.5, colour = "grey") + geom_point(aes(X1, X2, colour = elements), data = plotcord) + scale_colour_brewer(palette = "Set1") + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) + # discard default grid + titles in ggplot2 theme(panel.background = element_blank()) + theme(legend.position = "none") + theme(axis.title.x = element_blank(), axis.title.y = element_blank()) + theme(legend.background = element_rect(colour = NA)) + theme(panel.background = element_rect(fill = "white", colour = NA)) + theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) return(print(pnet)) } g <- network(50, directed = FALSE, density = 0.03) classes <- rbinom(50, 1, 0.5) + rbinom(50, 1, 0.5) + rbinom(50, 1, 0.5) set.vertex.attribute(g, "elements", classes) g plotg(g)
尝试:基于ggplot出图储存于list后批量拼图
ggplot拼图函数有很多,但是这里我们批量出图储存于list中,这里使用下面这个函数做拼图。 google上有人写的:
multiplot <- function(..., plotlist=NULL, cols) { require(grid) # Make a list from the ... arguments and plotlist plots <- c(list(...), plotlist) numPlots = length(plots) # Make the panel plotCols = cols # Number of columns of plots plotRows = ceiling(numPlots/plotCols) # Number of rows needed, calculated from # of cols # Set up the page grid.newpage() pushViewport(viewport(layout = grid.layout(plotRows, plotCols))) vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y) # Make each plot, in the correct location for (i in 1:numPlots) { curRow = ceiling(i/plotCols) curCol = (i-1) %% plotCols + 1 print(plots[[i]], vp = vplayout(curRow, curCol )) } }
基于微生物大量的OTU,我尝试了18中layout
大家使用cor.test计算得到的相关矩阵即可作为输入
# 确定物种间存在相互作用关系的阈值,将相关性R矩阵内不符合的数据转换为0 occor.r[occor.p>p.threshold|abs(occor.r)<r.threshold] = 0 library(network) library(ggplot2) library(sna) library(ergm) library(igraph) g <- network(occor.r, directed=FALSE,vertex.attrnames=T) summary(g) net = g m <- as.matrix.network.adjacency(net) # get sociomatrix plotcord = list() plotcord[[1]] <- data.frame(gplot.layout.fruchtermanreingold(m, NULL));names(plotcord[[1]]) = "fruchtermanreingold" plotcord[[2]] <- data.frame(gplot.layout.kamadakawai(m, NULL));names(plotcord[[2]]) = "kamadakawai" plotcord[[ 3]] <- data.frame(gplot.layout.adj(m, NULL));names(plotcord[[3]]) = "adj" plotcord[[ 4]] <- data.frame(gplot.layout.circle(m, NULL));names(plotcord[[4]]) = "circle" plotcord[[ 5]] <- data.frame(gplot.layout.circrand(m, NULL));names(plotcord[[5]]) = "circrand" plotcord[[ 6]] <- data.frame(gplot.layout.eigen(m, NULL));names(plotcord[[6]]) = "eigen" plotcord[[ 7]] <- data.frame(gplot.layout.fruchtermanreingold(m, NULL));names(plotcord[[7]]) = "fruchtermanreingold" plotcord[[ 8]] <- data.frame(gplot.layout.geodist(m, NULL));names(plotcord[[8]]) = "geodist" plotcord[[ 9]] <- data.frame(gplot.layout.hall(m, NULL));names(plotcord[[9]]) = "hall" plotcord[[ 10]]<- data.frame(gplot.layout.kamadakawai(m, NULL));names(plotcord[[10]]) = "kamadakawai" plotcord[[11]] <- data.frame(gplot.layout.mds(m, NULL));names(plotcord[[11]]) = "mds" plotcord[[12]] <- data.frame(gplot.layout.princoord(m, NULL));names(plotcord[[12]]) = "princoord" plotcord[[13 ]] <- data.frame(gplot.layout.random(m, NULL));names(plotcord[[13]]) = "random" plotcord[[14 ]] <- data.frame(gplot.layout.rmds(m, NULL));names(plotcord[[14]]) = "rmds" plotcord[[15 ]] <- data.frame(gplot.layout.segeo(m, NULL));names(plotcord[[15]]) = "segeo" plotcord[[16 ]] <- data.frame(gplot.layout.seham(m, NULL));names(plotcord[[16]]) = "seham" plotcord[[17 ]] <- data.frame(gplot.layout.spring(m, NULL));names(plotcord[[17]]) = "spring" plotcord[[18 ]] <- data.frame(gplot.layout.springrepulse(m, NULL));names(plotcord[[18]]) = "springrepulse" #计算花费很长时间,所以不计算了 # plotcord[[19 ]] <- data.frame(gplot.layout.target(m, NULL)) plots = list() ii = 1 for (ii in 1:18) { plotcor = plotcord[[ii]] colnames(plotcor) = c("X1", "X2") head(plotcor) plotcor$elements <- colnames(occor.r) edglist <- as.matrix.network.edgelist(net) edglist = as.data.frame(edglist) # aaaa = as.matrix.network(net) # 构建igraph对象构建邻接矩阵 igraph <- graph_from_adjacency_matrix(occor.r,mode="undirected",weighted=TRUE,diag=FALSE) E(igraph)$weight edglist$weight = E(igraph)$weight edges <- data.frame(plotcor[edglist[, 1], ], plotcor[edglist[, 2], ]) head(edges) edges$weight = E(igraph)$weight ##这里将边权重根据正负分为两类 aaa = rep("a",length(edges$weight)) for (i in 1:length(edges$weight)) { if (edges$weight[i]> 0) { aaa[i] = "+" } if (edges$weight[i]< 0) { aaa[i] = "-" } } #添加到edges中 edges$wei_label = aaa colnames(edges) <- c("X1", "Y1","OTU_1", "X2", "Y2","OTU_2","weight","wei_label") edges$midX <- (edges$X1 + edges$X2)/2 edges$midY <- (edges$Y1 + edges$Y2)/2 head(edges) # library(ggrepel) pnet <- ggplot() + geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2,colour = edges$wei_label), data = edges, size = 0.5) + geom_point(aes(X1, X2), size=3, pch = 21, data = plotcor, fill = "#8DD3C7") + scale_colour_brewer(palette = "Set1") + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) + labs( title = names(plotcord[[ii]])[1])+ # geom_text(aes(X1, X2,label=elements),size=4, data = plotcor)+ # discard default grid + titles in ggplot2 theme(panel.background = element_blank()) + theme(legend.position = "none") + theme(axis.title.x = element_blank(), axis.title.y = element_blank()) + theme(legend.background = element_rect(colour = NA)) + theme(panel.background = element_rect(fill = "white", colour = NA)) + theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) pnet plots[[ii]] = pnet } pdf(file = "cs.pdf",width = 12,height = 18) multiplot(plotlist=plots,cols=3) dev.off()
到这里我们就可以将微生物生态网络移植到ggolot中
这里我选择合适和layout布局方式,使用google网上构造的拼图工具,结合ggolot的微生物生态网络图 这里我做了细菌和真菌的五个处理的网络,隐去标签。
备注:代码略长,此处略去;
欢迎加入微生信生物讨论群
扫描下方二维码添加小编微信,小编带你入伙啦,大牛如云,让交流变得简单。(记得备注姓名-研究方向-单位,防止不小心忽略)