Python凸优化工具包——cvxopt


二次规划

二次规划标准型

 

例如

 

其中

\[\begin{array}{*{20}{c}}
{P = \left[ {\begin{array}{*{20}{c}}
{4,}&1\\
{1,}&2
\end{array}} \right]}&{q = \left[ {\begin{array}{*{20}{c}}
1\\
1
\end{array}} \right]}\\
\begin{array}{l}
G = \left[ {\begin{array}{*{20}{c}}
{ - 1,}&0\\
{0,}&{ - 1}
\end{array}} \right]\\
A = \left[ {\begin{array}{*{20}{c}}
{1,}&1
\end{array}} \right]
\end{array}&\begin{array}{l}
h = \left[ {\begin{array}{*{20}{c}}
0\\
0
\end{array}} \right]\\
b = 1
\end{array}
\end{array}\]

代码如下:

from cvxopt import matrix, solvers
Q = 2*matrix([ [2, .5], [.5, 1] ])
p = matrix([1.0, 1.0])
G = matrix([[-1.0,0.0],[0.0,-1.0]])
h = matrix([0.0,0.0])
A = matrix([1.0, 1.0], (1,2))
b = matrix(1.0)
sol=solvers.qp(Q, p, G, h, A, b)
print(sol['x'])

注:

matrix元素的类型必须是double类型,可以通过如下语句设置。

A = matrix([1, 1], (1,2), 'd')

 

 

参考链接:

https://cvxopt.org/examples/index.html

https://cvxopt.org/userguide/index.html


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM