覆盖技术,虚拟内存和交换分区技术都是为了解决物理内存空间不足的解决方案:
覆盖技术(应用程序手动把需要的指令和数据保存在内存中)
目标:在较小的可用内存中运行较大的程序
方法:依据程序逻辑结构,将程序划分为若干功能相对独立的模块;将不会同时执行的模块共享同一块内存区域
(1)必要部分(常用功能)的代码和数据常驻内存
(2)可选部分(不常用功能)放在其他程序模块中,只在需要用到时装入内存
(3)不存在调用关系的模块可相互覆盖,共用同一块内存区域
虚拟内存
虚拟内存的基本思想是,每个进程有用独立的逻辑地址空间(这部分在用户看来是连续的地址空间),内存被分为大小相等的多个块,称为页(Page).每个页都是一段连续的地址。对于进程来看,逻辑上貌似有很多内存空间,其中一部分对应物理内存上的一块(称为页框,通常页和页框大小相等),还有一些没加载在内存中的对应在硬盘上。
虚拟内存实际上可以比物理内存大。当访问虚拟内存时,会通过MMU(内存管理单元)去匹配对应的物理地址,而如果虚拟内存的页并不存在于物理内存中,会产生缺页中断(物理内存页不存在,1.相关页被加载到内存,但没有向MMU注册2.相关的页没有被加入到内存),从磁盘中取得缺的页放入内存,如果内存已满,还会根据某种算法将磁盘中的页换出。
而虚拟内存和物理内存的匹配是通过页表实现,页表存在MMU中,页表中每个项通常为32位,既4byte,除了存储虚拟地址和页框地址之外,还会存储一些标志位,比如是否缺页,是否修改过,写保护等。可以把MMU想象成一个接收虚拟地址项返回物理地址的方法。
这里解释中断和异常(陷入)区别:
在操作系统中引入核心态和用户态这两种工作状态后,就需要考虑这两种状态之间如何切换。操作系统内核工作在核心态,而用户程序工作在用户态。但系统不允许用户程序实现核心态的功能,而它们又必须使用这些功能。因此,需要在核心态建立一些“门”,实现从用户态进入核心态。在实际操作系统中,CPU运行上层程序时唯一能进入这些“门”的途径就是通过中断或异常。当中断或异常发生时,运行用户态的CPU会立即进入核心态,这是通过硬件实现的(例如,用一个特殊寄存器的一位来表示CPU所处的工作状态,0表示核心态,1表示用户态。若要进入核心态,只需将该位置0即可)。中断是操作系统中非常重要的一个概念,对一个运行在计算机上的实用操作系统而言,缺少了中断机制,将是不可想象的。
中断(Interruption),也称外中断,指来自CPU执行指令以外的事件的发生,如设备发出的I/O结束中断,表示设备输入/输出处理已经完成,希望处理机能够向设备发下一个输入 / 输出请求,同时让完成输入/输出后的程序继续运行。时钟中断,表示一个固定的时间片已到,让处理机处理计时、启动定时运行的任务等。这一类中断通常是与当前程序运行无关的事件,即它们与当前处理机运行的程序无关。
异常(Exception),也称内中断、例外或陷入(Trap),指源自CPU执行指令内部的事件,如程序的非法操作码、 地址越界、算术溢出、虚存系统的缺页以及专门的陷入指令等引起的事件。对异常的处理一般要依赖于当前程序的运行现场,而且异常不能被屏蔽,一旦出现应立即处理。
直接去操作物理地址的一些问题:
问题1:进程地址空间不隔离。由于程序都是直接访问物理内存,所以恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。
问题2:内存使用效率低。在A和B都运行的情况下,如果用户又运行了程序C,而程序C需要20M大小的内存才能运行,而此时系统只剩下8M的空间可供使用,所以此时系统必须在已运行的程序中选择一个将该程序的数据暂时拷贝到硬盘上,释放出部分空间来供程序C使用,然后再将程序C的数据全部装入内存中运行。可以想象得到,在这个过程中,有大量的数据在装入装出,导致效率十分低下。
问题3:程序运行的地址不确定。当内存中的剩余空间可以满足程序C的要求后,操作系统会在剩余空间中随机分配一段连续的20M大小的空间给程序C使用,因为是随机分配的,所以程序运行的地址是不确定的。
分页和分段有什么区别?
1.段是信息的逻辑单位,它是根据用户的需要划分的,因此段对用户是可见的(这样就解决了上面的问题1,问题3) ;页是信息的物理单位,是为了管理主存的方便而划分的,分页是为实现离散分配方式,提高内存利用率,对用户是透明的。
2.段的大小不固定,由它所完成的功能决定,由用户编写的程序决定的;页大大小固定,由操作系统决定
3.段向用户提供二维地址空间(在标识一个地址时,既需要给出段名,又需要给出段内地址);页向用户提供的是一维地址空间
4.段是信息的逻辑单位,便于存储保护和信息的共享,页的保护和共享受到限制。
5.页式存储管理的优点是没有外碎片(因为页的大小固定4k),但会产生内碎片(一个页可能填充不满);而段式管理的优点是没有内碎片(因为段可以改变段大小来消除内碎片),但段会产生外碎片(比如4k的段换5k的段,会产生1k的外碎片)。
什么是缓冲区溢出?有什么危害?其原因是什么?
缓冲区溢出是指当计算机向缓冲区填充数据时超出了缓冲区本身的容量,溢出的数据覆盖在合法数据上。
危害有以下两点:
- 程序崩溃,导致拒绝额服务
- 跳转并且执行一段恶意代码
造成缓冲区溢出的主要原因是程序中没有仔细检查用户输入。
交换技术:Linux下的swap分区及作用(操作系统自动把暂时不能执行的程序保存到外存磁盘中)
swap 分区是Linux系统的交换分区,当内存不够用的时候,我们使用 swap 分区存放内存中暂时不用的数据。也就是说,当内存不够用时,我们使用 swap 分区来临时顶替。
free 命令主要是用来査看内存和 swap 分区的使用情况的,其中:
- total:是指总数;
- used:是指已经使用的;
- free:是指空闲的;
- shared:是指共享的;
- buffers:是指缓冲内存数;
- cached:是指缓存内存数,单位是KB;
我们需要解释一下 buffers(缓冲)和 cached(缓存)的区别。简单来讲,cached 是给读取数据时加速的,buffers 是给写入数据加速的。cached 是指把读取出来的数据保存在内存中,当再次读取时,不用读取硬盘而直接从内存中读取,加速了数据的读取过程;buffers 是指在写入数据时,先把分散的写入操作保存到内存中,当达到一定程度后再集中写入硬盘,减少了磁盘碎片和硬盘的反复寻道,加速了数据的写入过程。
页面置换算法:
1.最佳置换算法(OPT)
最佳(Optimal, OPT)置换算法所选择的被淘汰页面将是以后永不使用的,或者是在最长时间内不再被访问的页面,这样可以保证获得最低的缺页率。但由于人们目前无法预知进程在内存下的若千页面中哪个是未来最长时间内不再被访问的,因而该算法无法实现。
2.先进先出(FIFO)页面置换算法
优先淘汰最早进入内存的页面,亦即在内存中驻留时间最久的页面。该算法实现简单,只需把调入内存的页面根据先后次序链接成队列,设置一个指针总指向最早的页面。但该算法与进程实际运行时的规律不适应,因为在进程中,有的页面经常被访问。
3. 最近最久未使用(LRU)置换算法
选择最近最长时间未访问过的页面予以淘汰,它认为过去一段时间内未访问过的页面,在最近的将来可能也不会被访问。该算法为每个页面设置一个访问字段,来记录页面自上次被访问以来所经历的时间,淘汰页面时选择现有页面中值最大的予以淘汰。
4. 时钟(CLOCK)置换算法
LRU算法的性能接近于OPT,但是实现起来比较困难,且开销大;FIFO算法实现简单,但性能差。所以操作系统的设计者尝试了很多算法,试图用比较小的开销接近LRU的性能,这类算法都是CLOCK算法的变体。
简单的CLOCK算法是给每一帧关联一个附加位,称为使用位。当某一页首次装入主存时,该帧的使用位(u)设置为1;当该页随后再被访问到时,它的使用位也被置为1。对于页替换算法,用于替换的候选帧集合看做一个循环缓冲区,并且有一个指针与之相关联。当某一页被替换时,该指针被设置成指向缓冲区中的下一帧。当需要替换一页时,操作系统扫描缓冲区,以查找使用位被置为0的一帧。每当遇到一个使用位为1的帧时,操作系统就将该位重新置为0;如果在这个过程开始时,缓冲区中所有帧的使用位均为0,则选择遇到的第一个帧替换;如果所有帧的使用位均为1,则指针在缓冲区中完整地循环一周,把所有使用位都置为0,并且停留在最初的位置上,替换该帧中的页。由于该算法循环地检查各页面的情况,故称为CLOCK算法,又称为最近未用(Not Recently Used, NRU)算法。
CLOCK算法的性能比较接近LRU,而通过增加使用的位数目,可以使得CLOCK算法更加高效。在使用位的基础上再增加一个修改位,则得到改进型的CLOCK置换算法。这样,每一帧都处于以下四种情况之一:
- 最近未被访问,也未被修改(u=0, m=0)。
- 最近被访问,但未被修改(u=1, m=0)。
- 最近未被访问,但被修改(u=0, m=1)。
- 最近被访问,被修改(u=1, m=1)。
虚拟页式存储中的页表项结构:
驻留位:表示该页是否在内存
1表示该页位于内存中,该页表项是有效的,可以使用
0表示该页当前在外存中,访问该页表项将导致缺页异常
修改位:表示在内存中的该页是否被修改过
回收该物理页面时,据此判断是否要把它的内容写回外存
访问位:表示该页面是否被访问过(读或写)
用于页面置换算法
保护位:表示该页的允许访问方式
只读、可读写、可执行等
计算机如何访问一个文件的字节流?
说了Linux从inode节点找到磁盘地址,进行读取
常见的操作系统进程调度算法?
https://blog.csdn.net/luyafei_89430/article/details/12971171