开源项目(9-0)综述--基于深度学习的目标跟踪sort与deep-sort


 

基于深度学习的目标跟踪sort与deep-sort

 https://github.com/Ewenwan/MVision/tree/master/3D_Object_Detection/Object_Tracking

 

 1 论文和源码地址

SORT:

论文地址:http://arxiv.org/pdf/1602.00763.pdf

python代码地址:https://github.com/abewley/sort

 

前景提取获取目标框ID  C++版本: 

 https://github.com/ngthanhtin/Muiltiple-Object-Tracking/tree/master/MOT-MAIN/MOT_Image_Subtraction/MOT_Image_Subtraction

从txt读取目标框信息版本的c++

 https://github.com/mcximing/sort-cpp/tree/master/sort-c%2B%2B

(没有数据集)

https://github.com/mcximing/sort-cpp

此代码已在Windows上使用Visual Studio Community 2013 + OpenCV 2.4.8进行了测试

原始Python代码和发布信息可在https://github.com/abewley/sort, Alex Bewley找到了

 

 

deep-SORT:

论文地址:https://arxiv.org/pdf/1703.07402.pdf

代码链接:https://github.com/nwojke/deep_sort

数据集:https://motchallenge.net/vis/PETS09-S2L1/gt/

2 用来干什么?

https://blog.csdn.net/Scwabc_123/article/details/89110633

 

SORT跟踪算法到底在干什么?(以单目标跟踪为例说明如下)

  • 假设T1时刻成功跟踪了某个单个物体,ID为1,绘制物体跟踪BBox(紫色)
  • T2时刻物体检测BBox总共有4个(黑色),预测T2时刻物体跟踪的BBox(紫色)有1个,解决紫色物体跟踪BBox如何与黑色物体检测BBox关联的算法,就是SORT物体跟踪算法要解决的核心问题
  • SORT关联两个BBox的核心算法是:用IOU计算Bbox之间的距离 + 匈牙利算法选择最优关联结果

 

 

  

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM