【7-1保存模型saver.save()】


 1 import tensorflow as tf  2 from tensorflow.examples.tutorials.mnist import input_data  3 
 4 #载入数据集
 5 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)  6 
 7 #每个批次100张照片
 8 batch_size = 100
 9 #计算一共有多少个批次
10 n_batch = mnist.train.num_examples // batch_size 11 
12 #定义两个placeholder
13 x = tf.placeholder(tf.float32,[None,784]) 14 y = tf.placeholder(tf.float32,[None,10]) 15 
16 #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
17 W = tf.Variable(tf.zeros([784,10])) 18 b = tf.Variable(tf.zeros([10])) 19 prediction = tf.nn.softmax(tf.matmul(x,W)+b) 20 
21 #二次代价函数
22 # loss = tf.reduce_mean(tf.square(y-prediction))
23 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) 24 #使用梯度下降法
25 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) 26 
27 #初始化变量
28 init = tf.global_variables_initializer() 29 
30 #结果存放在一个布尔型列表中
31 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
32 #求准确率
33 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) 34 
35 saver = tf.train.Saver() 36 
37 with tf.Session() as sess: 38  sess.run(init) 39     for epoch in range(11): 40         for batch in range(n_batch): 41             batch_xs,batch_ys = mnist.train.next_batch(batch_size) 42             sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) 43         
44         acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) 45         print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc)) 46     #保存模型
47     saver.save(sess,'net/my_net.ckpt')

还是以手写数字识别为例,想要保存模型,首先建立一个saver:

saver = tf.train.Saver()

通过调用save,自动将session中的参数保存起来:

saver.save(sess,'net/my_net.ckpt')

创建路径为当前路径下net文件夹,运行之后:

2019-06-19 10:38:19


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM