BERT预训练模型有以下几个:
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Multilingual Cased (New, recommended)
: 104 languages, 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Base, Multilingual Uncased (Orig, not recommended)
:(Not recommended, useMultilingual Cased
instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Base, Chinese
: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
数据集准备:
数据集(下载)包括训练集(train.tsv)、验证集(dev.tsv)和测试集(test.tsv),格式相同,每一行表示一条数据,每条数据格式为【标签+TAB+内容】
#批量转换数据格式
def _writeto_tsv(a): fr = open('/home/zwt/Desktop/testbert/caijing/{}.txt'.format(a), 'r') txt = fr.read() txt = txt.replace('\n', '') txt = txt.replace('\u3000', '') txt = txt.replace(' ', '') txt = txt[:128] txt = '财经\t' + txt + '\n' fw.write(txt) fr.close() fw = open('/home/zwt/Desktop/testbert/caijing.tsv','w') for a in range(799401,799440): _writeto_tsv(a) fw.close() #####
def _writeto_tsv(a): fr = open('/home/zwt/Desktop/testbert/yule/{}.txt'.format(a), 'r') txt = fr.read() txt = txt.replace('\n', '') txt = txt.replace('\u3000', '') txt = txt.replace(' ', '') txt = txt[:128] txt = '娱乐\t' + txt + '\n' fw.write(txt) fr.close() fw = open('/home/zwt/Desktop/testbert/yule.tsv','w') for a in range(157340,157379): _writeto_tsv(a) fw.close() #####
def _writeto_tsv(a): fr = open('/home/zwt/Desktop/testbert/keji/{}.txt'.format(a), 'r') txt = fr.read() txt = txt.replace('\n', '') txt = txt.replace('\u3000', '') txt = txt.replace(' ', '') txt = txt[:128] txt = '科技\t' + txt + '\n' fw.write(txt) fr.close() fw = open('/home/zwt/Desktop/testbert/keji.tsv','w') for a in range(482362,482401): _writeto_tsv(a) fw.close()
修改代码:
run_classifier.py中有DataProcessor基类:
class DataProcessor(object): """Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set."""
raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines
在这个基类中定义了一个读取文件的静态方法_read_tsv,四个分别获取训练集,验证集,测试集和标签的方法。接下来我们要定义自己的数据处理的类,我们将我们的类命名ZwtProcessor,继承于DataProcessor,编写ZwtProcessor(本例中使用三分类数据,如果需要更多分类,修改labels参数)
class ZwtProcessor(DataProcessor): """Processor for the News data set (GLUE version)."""
def __init__(self): self.labels = ['财经', '娱乐', '科技'] def get_train_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): return self.labels def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[1]) label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples
注意这里有一个self._read_tsv()方法,规定读取的数据是使用TAB分割的,如果你的数据集不是这种形式组织的,需要重写一个读取数据的方法,更改“_create_examples()”的实现。
在main函数的processors中加入自己的processors
修改前: processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } 修改后: processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, "zwt": ZwtProcessor, }
至此已经完成准备工作,编写一个run.sh文件运行即可,内容如下:
#!/usr/bin/bash
python3 /home/zwt/PycharmProjects/test/bert-master/run_classifier.py \ --task_name=zwt \ --do_train=true \ --do_eval=true \ --data_dir=/home/zwt/PycharmProjects/test/zwtBERT/data/ \ --vocab_file=/home/zwt/PycharmProjects/test/data/chinese_L-12_H-768_A-12/vocab.txt \ --bert_config_file=/home/zwt/PycharmProjects/test/data/chinese_L-12_H-768_A-12/bert_config.json \ --init_checkpoint=/home/zwt/PycharmProjects/test/data/chinese_L-12_H-768_A-12/bert_model.ckpt \ --max_seq_length=128 \ --train_batch_size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3.0 \ --output_dir=/home/zwt/PycharmProjects/test/zwtBERT/zwt_output
######参数解释#######
data_dir:存放数据集的文件夹
bert_config_file:bert中文模型中的bert_config.json文件
task_name:processors中添加的任务名“zbs”
vocab_file:bert中文模型中的vocab.txt文件
output_dir:训练好的分类器模型的存放文件夹
init_checkpoint:bert中文模型中的bert_model.ckpt.index文件
do_train:是否训练,设置为“True”
do_eval:是否验证,设置为“True”
do_predict:是否测试,设置为“False”
max_seq_length:输入文本序列的最大长度,也就是每个样本的最大处理长度,多余会去掉,不够会补齐。最大值512,当显存不足时,可以适当降低max_seq_length。
train_batch_size: 训练模型求梯度时,批量处理数据集的大小。值越大,训练速度越快,内存占用越多。
eval_batch_size: 验证时,批量处理数据集的大小。同上。
predict_batch_size: 测试时,批量处理数据集的大小。同上。
learning_rate: 反向传播更新权重时,步长大小。值越大,训练速度越快。值越小,训练速度越慢,收敛速度慢,
容易过拟合。迁移学习中,一般设置较小的步长(小于2e-4)
num_train_epochs:所有样本完全训练一遍的次数。
warmup_proportion:用于warmup的训练集的比例。
save_checkpoints_steps:检查点的保存频率。
终端输入/bin/bash zwtBERTrun.sh即可运行
原生bert指标只有loss和accuracy,可自行修改
修改前: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } 修改后: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) auc = tf.metrics.auc(labels=label_ids, predictions=predictions, weights=is_real_example) precision = tf.metrics.precision(labels=label_ids, predictions=predictions, weights=is_real_example) recall = tf.metrics.recall(labels=label_ids, predictions=predictions, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, 'eval_auc': auc, 'eval_precision': precision, 'eval_recall': recall, }
https://www.cnblogs.com/jiangxinyang/p/10241243.html
https://www.jiqizhixin.com/articles/2018-12-03
https://cloud.tencent.com/developer/article/1356797
https://blog.csdn.net/xiaosa_kun/article/details/84868475