解释--全连接层输入大小固定


  在刚接触目标检测时,学习到R-CNN时,为了使全连接层的输入大小固定,作者将卷积神经网络的输出经过warp操作,使得输入大小固定,那问题来了,为什么全连接网络的输入需要固定,而卷积神经网络的大小可以是任意的。

                  

  大家都知道, ,全连接神经网络结构一旦固定,需要学习的参数w是固定的,例如 输入图像是 28*28 = 784,w 的转置= (500,784),===>  输出矩阵的shape:(500,1),如果输入图像的大小改变,但是w的大小并不会改变,因此,无法计算。

  而对于卷积神经网络,卷积核的每个元素表示参数w,不论输入图像大小怎么改变,卷积核大小是不变的,并且通过卷积操作,每次都能训练到卷积核中的元素,所以卷积神经网络的输入图像的大小是任意的。

 

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM