[版权申明:本文系作者原创,转载请注明出处]
文章出处: http://blog.csdn.net/sdksdk0/article/details/53966430
作者:朱培 ID:sdksdk0
--------------------------------------------------------------------------------------------
首先祝大家2017新年快乐,我今天分享的是通过ElasticSearch与hbase进行整合的一个搜索案例,这个案例涉及的技术面比较广,首先你得有JAVAEE的基础,要会SSM,而且还要会大数据中的hdfs、zookeeper、hbase以及ElasticSearch和kibana。环境部署在4台centos7上。主机名为node1-node4。这里假设你已经安装好了zookeeper、hadoop、hbase和ElasticSearch还有kibana,我这里使用的是hadoop2.5.2,ElasticSearch用的你是2.2,kibana是4.4.1。我这里的环境是 hadoop是4台在node1-node4, zookeeper是3台再node1-node3,,ElasticSearch是3台在node1-node3,kibana是一台在node1上。该系统可以对亿万数据查询进行秒回,是一般的关系型数据库很难做到的。在IntelliJ IDEA 中进行代码编写。环境搭建我这里就不啰嗦,相信大家作为一名由经验的开发人员来说都是小事一桩。文末提供源码下载链接。
一、ElasticSearch和Hbase
ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。 Elasticsearch的性能是solr的50倍。
HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、
实时读写的分布式数据库
– 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理
HBase中的海量数据,利用Zookeeper作为其分布式协同服务
– 主要用来存储非结构化和半结构化的松散数据(列存 NoSQL 数据库)
二、需求分析&服务器环境设置
主要是做一个文章的搜索。有文章标题、作者、摘要、内容四个主要信息。效果图如下:这里样式我就没怎么设置了。。。。想要好看一点的可以自己加css。
服务器:
在3台centos7中部署,主机名为node1-node3.安装好ElasticSearch并配置好集群,
1. 解压
2. 修改config/elasticsearch.yml (注意要顶格写,冒号后面要加一个空格)
a) Cluster.name: tf (同一集群要一样)
b) Node.name: node-1 (同一集群要不一样)
c) Network.Host: 192.168.44.137 这里不能写127.0.0.1
3. 解压安装kibana
4. 再congfig目录下的kibana.yml中修改elasticsearch.url
5. 安装插件
Step 1: Install Marvel into Elasticsearch: |
bin/plugin install license |
Step 2: Install Marvel into Kibana |
bin/kibana plugin --install elasticsearch/marvel/latest |
Step 3: Start Elasticsearch and Kibana |
启动好elasticsearch集群后,
然后启动zookeeper、hdfs、hbase。zkService.sh start 、start-all.sh、start-hbase.sh。接下来就是剩下编码步骤了。
三、编码开发
1、首先在IntelliJ IDEA中新建一个maven工程,加入如下依赖。
-
<dependencies>
-
<dependency>
-
<groupId>junit
</groupId>
-
<artifactId>junit
</artifactId>
-
<version>4.9
</version>
-
</dependency>
-
-
-
<!-- spring 3.2 -->
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-context
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-orm
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-aspects
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-web
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-webmvc
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.springframework
</groupId>
-
<artifactId>spring-test
</artifactId>
-
<version>3.2.0.RELEASE
</version>
-
</dependency>
-
-
<!-- JSTL -->
-
<dependency>
-
<groupId>jstl
</groupId>
-
<artifactId>jstl
</artifactId>
-
<version>1.2
</version>
-
</dependency>
-
<dependency>
-
<groupId>taglibs
</groupId>
-
<artifactId>standard
</artifactId>
-
<version>1.1.2
</version>
-
</dependency>
-
<!-- slf4j -->
-
<dependency>
-
<groupId>org.slf4j
</groupId>
-
<artifactId>slf4j-api
</artifactId>
-
<version>1.7.10
</version>
-
</dependency>
-
<dependency>
-
<groupId>org.slf4j
</groupId>
-
<artifactId>slf4j-log4j12
</artifactId>
-
<version>1.7.10
</version>
-
</dependency>
-
-
<!-- elasticsearch -->
-
<dependency>
-
<groupId>org.elasticsearch
</groupId>
-
<artifactId>elasticsearch
</artifactId>
-
<version>2.2.0
</version>
-
</dependency>
-
-
<!-- habse -->
-
<dependency>
-
<groupId>org.apache.hbase
</groupId>
-
<artifactId>hbase-client
</artifactId>
-
<version>1.1.3
</version>
-
<exclusions>
-
<exclusion>
-
<groupId>com.google.guava
</groupId>
-
<artifactId>guava
</artifactId>
-
</exclusion>
-
</exclusions>
-
</dependency>
-
-
-
</dependencies>
2、Dao层
-
private Integer id;
-
private String title;
-
-
private String describe;
-
-
private String content;
-
-
private String author;
实现其getter/setter方法。
3、数据准备
在桌面新建一个doc1.txt文档,用于把我们需要查询的数据写入到里面,这里我只准备了5条数据。中间用tab键隔开。
4、在hbase中建立表。表名师doc,列族是cf。
public static void main(String[] args) throws Exception { HbaseUtils hbase = new HbaseUtils(); //创建一张表
hbase.createTable("doc","cf");}
/** * 创建一张表 * @param tableName * @param column * @throws Exception */ public void createTable(String tableName, String column) throws Exception { if(admin.tableExists(TableName.valueOf(tableName))){ System.out.println(tableName+"表已经存在!"); }else{ HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName)); tableDesc.addFamily(new HColumnDescriptor(column.getBytes())); admin.createTable(tableDesc); System.out.println(tableName+"表创建成功!"); } }
5、导入索引。这一步的时候确保你的hdfs和hbase以及elasticsearch是处于开启状态。
-
@Test
-
public void createIndex() throws Exception {
-
List<Doc> arrayList =
new ArrayList<Doc>();
-
File file =
new File(
"C:\\Users\\asus\\Desktop\\doc1.txt");
-
List<String> list = FileUtils.readLines(file,
"UTF8");
-
for(String line : list){
-
Doc Doc =
new Doc();
-
String[] split = line.split(
"\t");
-
System.out.print(split[
0]);
-
int parseInt = Integer.parseInt(split[
0].trim());
-
Doc.setId(parseInt);
-
Doc.setTitle(split[
1]);
-
Doc.setAuthor(split[
2]);
-
Doc.setDescribe(split[
3]);
-
Doc.setContent(split[
3]);
-
arrayList.add(Doc);
-
}
-
HbaseUtils hbaseUtils =
new HbaseUtils();
-
for (Doc Doc : arrayList) {
-
try {
-
//把数据插入hbase
-
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+
"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_TITLE, Doc.getTitle());
-
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+
"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_AUTHOR, Doc.getAuthor());
-
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+
"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_DESCRIBE, Doc.getDescribe());
-
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+
"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_CONTENT, Doc.getContent());
-
//把数据插入es
-
Esutil.addIndex(
"tfjt",
"doc", Doc);
-
}
catch (Exception e) {
-
e.printStackTrace();
-
}
-
}
-
}
数据导入成功之后可以在服务器上通过命令查看一下:
curl -XGET http://node1:9200/tfjt/_search
7、搜索。
在这里新建了一个工具类Esutil.java,主要用于处理搜索的。注意,我们默认的elasticsearch是9200端口的,这里数据传输用的是9300,不要写成9200了,然后就是集群名字为tf,也就是前面配置的集群名。还有就是主机名node1-node3,这里不能写ip地址,如果是本地测试的话,你需要在你的window下面配置hosts文件。
-
public
class Esutil {
-
public
static Client client =
null;
-
-
/**
-
* 获取客户端
-
* @return
-
*/
-
public static Client getClient() {
-
if(client!=
null){
-
return client;
-
}
-
Settings settings = Settings.settingsBuilder().put(
"cluster.name",
"tf").build();
-
try {
-
client = TransportClient.builder().settings(settings).build()
-
.addTransportAddress(
new InetSocketTransportAddress(InetAddress.getByName(
"node1"),
9300))
-
.addTransportAddress(
new InetSocketTransportAddress(InetAddress.getByName(
"node2"),
9300))
-
.addTransportAddress(
new InetSocketTransportAddress(InetAddress.getByName(
"node3"),
9300));
-
}
catch (UnknownHostException e) {
-
e.printStackTrace();
-
}
-
return client;
-
}
-
-
-
-
-
public static String addIndex(String index,String type,Doc Doc){
-
HashMap<String, Object> hashMap =
new HashMap<String, Object>();
-
hashMap.put(
"id", Doc.getId());
-
hashMap.put(
"title", Doc.getTitle());
-
hashMap.put(
"describe", Doc.getDescribe());
-
hashMap.put(
"author", Doc.getAuthor());
-
-
IndexResponse response = getClient().prepareIndex(index, type).setSource(hashMap).execute().actionGet();
-
return response.getId();
-
}
-
-
-
public static Map<String, Object> search(String key,String index,String type,int start,int row){
-
SearchRequestBuilder builder = getClient().prepareSearch(index);
-
builder.setTypes(type);
-
builder.setFrom(start);
-
builder.setSize(row);
-
//设置高亮字段名称
-
builder.addHighlightedField(
"title");
-
builder.addHighlightedField(
"describe");
-
//设置高亮前缀
-
builder.setHighlighterPreTags(
"<font color='red' >");
-
//设置高亮后缀
-
builder.setHighlighterPostTags(
"</font>");
-
builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH);
-
if(StringUtils.isNotBlank(key)){
-
// builder.setQuery(QueryBuilders.termQuery("title",key));
-
builder.setQuery(QueryBuilders.multiMatchQuery(key,
"title",
"describe"));
-
}
-
builder.setExplain(
true);
-
SearchResponse searchResponse = builder.get();
-
-
SearchHits hits = searchResponse.getHits();
-
long total = hits.getTotalHits();
-
Map<String, Object> map =
new HashMap<String,Object>();
-
SearchHit[] hits2 = hits.getHits();
-
map.put(
"count", total);
-
List<Map<String, Object>> list =
new ArrayList<Map<String, Object>>();
-
for (SearchHit searchHit : hits2) {
-
Map<String, HighlightField> highlightFields = searchHit.getHighlightFields();
-
HighlightField highlightField = highlightFields.get(
"title");
-
Map<String, Object> source = searchHit.getSource();
-
if(highlightField!=
null){
-
Text[] fragments = highlightField.fragments();
-
String name =
"";
-
for (Text text : fragments) {
-
name+=text;
-
}
-
source.put(
"title", name);
-
}
-
HighlightField highlightField2 = highlightFields.get(
"describe");
-
if(highlightField2!=
null){
-
Text[] fragments = highlightField2.fragments();
-
String describe =
"";
-
for (Text text : fragments) {
-
describe+=text;
-
}
-
source.put(
"describe", describe);
-
}
-
list.add(source);
-
}
-
map.put(
"dataList", list);
-
return map;
-
}
-
-
// public static void main(String[] args) {
-
// Map<String, Object> search = Esutil.search("hbase", "tfjt", "doc", 0, 10);
-
// List<Map<String, Object>> list = (List<Map<String, Object>>) search.get("dataList");
-
// }
-
}
8、使用spring控制层处理
在里面的spring配置这里就不说了,代码文末提供。
-
@RequestMapping(
"/search.do")
-
public String serachArticle(Model model,
-
@RequestParam(value="keyWords",required = false) String keyWords,
-
@RequestParam(value = "pageNum", defaultValue = "1") Integer pageNum,
-
@RequestParam(value = "pageSize", defaultValue = "3") Integer pageSize){
-
try {
-
keyWords =
new String(keyWords.getBytes(
"ISO-8859-1"),
"UTF-8");
-
}
catch (UnsupportedEncodingException e) {
-
e.printStackTrace();
-
}
-
Map<String,Object> map =
new HashMap<String, Object>();
-
int count =
0;
-
try {
-
map = Esutil.search(keyWords,
"tfjt",
"doc",(pageNum-
1)*pageSize, pageSize);
-
count = Integer.parseInt(((Long) map.get(
"count")).toString());
-
}
catch (Exception e) {
-
logger.error(
"查询索引错误!{}",e);
-
e.printStackTrace();
-
}
-
PageUtil<Map<String, Object>> page =
new PageUtil<Map<String, Object>>(String.valueOf(pageNum),String.valueOf(pageSize),count);
-
List<Map<String, Object>> articleList = (List<Map<String, Object>>)map.get(
"dataList");
-
page.setList(articleList);
-
model.addAttribute(
"total",count);
-
model.addAttribute(
"pageNum",pageNum);
-
model.addAttribute(
"page",page);
-
model.addAttribute(
"kw",keyWords);
-
return
"index.jsp";
-
}
9、页面
-
<center>
-
<form action=
"search.do" method=
"get">
-
<input type=
"text" name=
"keyWords" />
-
<input type=
"submit" value=
"百度一下">
-
<input type=
"hidden" value=
"1" name=
"pageNum">
-
</form>
-
<c:
if test=
"${! empty page.list }">
-
<h3>百度为您找到相关结果约${total}个</h3>
-
<c:forEach items=
"${page.list}" var=
"bean">
-
<a href=
"/es/detailDocById/${bean.id}.do">${bean.title}</a>
-
<br/>
-
<br/>
-
<span>${bean.describe}</span>
-
<br/>
-
<br/>
-
</c:forEach>
-
-
<c:
if test=
"${page.hasPrevious }">
-
<a href=
"search.do?pageNum=${page.previousPageNum }&keyWords=${kw}"> 上一页</a>
-
</c:
if>
-
<c:forEach begin=
"${page.everyPageStart }" end=
"${page.everyPageEnd }" var=
"n">
-
<a href=
"search.do?pageNum=${n }&keyWords=${kw}"> ${n }</a>
-
</c:forEach>
-
-
<c:
if test=
"${page.hasNext }">
-
<a href=
"search.do?pageNum=${page.nextPageNum }&keyWords=${kw}"> 下一页</a>
-
</c:
if>
-
</c:
if>
-
</center>
在IntelliJ IDEA 中配置好常用的项目,这里发布名Application context名字为es,当然你也可以自定义设置。
最终效果如下:搜索COS会得到结果,速度非常快。
总结:这个案例的操作流程还是挺多的,要有细心和耐心,特别是服务器配置,各种版本要匹配好,不然会出各种头疼的问题,当然了,这个还是需要有一定基础,不然搞不定这个事情。。。。。
源码地址:https://github.com/sdksdk0/es