17-Flink消费Kafka写入Mysql


戳更多文章:

1-Flink入门

2-本地环境搭建&构建第一个Flink应用

3-DataSet API

4-DataSteam API

5-集群部署

6-分布式缓存

7-重启策略

8-Flink中的窗口

9-Flink中的Time

Flink时间戳和水印

Broadcast广播变量

FlinkTable&SQL

Flink实战项目实时热销排行

Flink写入RedisSink

17-Flink消费Kafka写入Mysql

本文介绍消费Kafka的消息实时写入Mysql。

  1. maven新增依赖:
<dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.39</version> </dependency> 

2.重写RichSinkFunction,实现一个Mysql Sink

public class MysqlSink extends RichSinkFunction<Tuple3<Integer, String, Integer>> { private Connection connection; private PreparedStatement preparedStatement; String username = ""; String password = ""; String drivername = ""; //配置改成自己的配置 String dburl = ""; @Override public void invoke(Tuple3<Integer, String, Integer> value) throws Exception { Class.forName(drivername); connection = DriverManager.getConnection(dburl, username, password); String sql = "replace into table(id,num,price) values(?,?,?)"; //假设mysql 有3列 id,num,price preparedStatement = connection.prepareStatement(sql); preparedStatement.setInt(1, value.f0); preparedStatement.setString(2, value.f1); preparedStatement.setInt(3, value.f2); preparedStatement.executeUpdate(); if (preparedStatement != null) { preparedStatement.close(); } if (connection != null) { connection.close(); } } } 
  1. Flink主类
public class MysqlSinkTest { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); // 1,abc,100 类似这样的数据,当然也可以是很复杂的json数据,去做解析 FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties); env.getConfig().disableSysoutLogging(); //设置此可以屏蔽掉日记打印情况 env.getConfig().setRestartStrategy( RestartStrategies.fixedDelayRestart(5, 5000)); env.enableCheckpointing(2000); DataStream<String> stream = env .addSource(consumer); DataStream<Tuple3<Integer, String, Integer>> sourceStream = stream.filter((FilterFunction<String>) value -> StringUtils.isNotBlank(value)) .map((MapFunction<String, Tuple3<Integer, String, Integer>>) value -> { String[] args1 = value.split(","); return new Tuple3<Integer, String, Integer>(Integer .valueOf(args1[0]), args1[1],Integer .valueOf(args1[2])); }); sourceStream.addSink(new MysqlSink()); env.execute("data to mysql start"); } } 

所有代码,我放在了我的公众号,回复Flink可以下载

  • 海量【java和大数据的面试题+视频资料】整理在公众号,关注后可以下载~
  • 更多大数据技术欢迎和作者一起探讨~
 
image


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM