1,验证码识别接口代码
import json import base64 import requests def shibie(): data = {} path = "./img/" file_name = "a.jpg" with open(path + file_name, "rb") as f: data0 = f.read() data['image_base64'] = str(base64.b64encode(data0),'utf-8') data['app_id'] = 'qq' data['ocr_code'] = '0000' headers={'Content-Type':'application/json'} res = requests.post(url='https://nmd-ai.juxinli.com/ocr_captcha',headers=headers,data=json.dumps(data)) res = res.json() return res['string']
2,验证码识别思路代码
import os import pytesseract from PIL import Image from collections import defaultdict # tesseract.exe所在的文件路径 pytesseract.pytesseract.tesseract_cmd = 'D:/Tesseract-OCR/tesseract.exe' # 获取图片中像素点数量最多的像素 def get_threshold(image): pixel_dict = defaultdict(int) # 像素及该像素出现次数的字典 rows, cols = image.size for i in range(rows): for j in range(cols): pixel = image.getpixel((i, j)) pixel_dict[pixel] += 1 count_max = max(pixel_dict.values()) # 获取像素出现出多的次数 pixel_dict_reverse = {v: k for k, v in pixel_dict.items()} threshold = pixel_dict_reverse[count_max] # 获取出现次数最多的像素点 return threshold # 按照阈值进行二值化处理 # threshold: 像素阈值 def get_bin_table(threshold): # 获取灰度转二值的映射table table = [] for i in range(256): rate = 0.1 # 在threshold的适当范围内进行处理 if threshold * (1 - rate) <= i <= threshold * (1 + rate): table.append(1) else: table.append(0) return table # 去掉二值化处理后的图片中的噪声点 def cut_noise(image): rows, cols = image.size # 图片的宽度和高度 change_pos = [] # 记录噪声点位置 # 遍历图片中的每个点,除掉边缘 for i in range(1, rows - 1): for j in range(1, cols - 1): # pixel_set用来记录该店附近的黑色像素的数量 pixel_set = [] # 取该点的邻域为以该点为中心的九宫格 for m in range(i - 1, i + 2): for n in range(j - 1, j + 2): if image.getpixel((m, n)) != 1: # 1为白色,0位黑色 pixel_set.append(image.getpixel((m, n))) # 如果该位置的九宫内的黑色数量小于等于4,则判断为噪声 if len(pixel_set) <= 4: change_pos.append((i, j)) # 对相应位置进行像素修改,将噪声处的像素置为1(白色) for pos in change_pos: image.putpixel(pos, 1) return image # 返回修改后的图片 # 识别图片中的数字加字母 # 传入参数为图片路径,返回结果为:识别结果 def OCR_lmj(img_path): image = Image.open(img_path) # 打开图片文件 imgry = image.convert('L') # 转化为灰度图 # 获取图片中的出现次数最多的像素,即为该图片的背景 max_pixel = get_threshold(imgry) # 将图片进行二值化处理 table = get_bin_table(threshold=max_pixel) out = imgry.point(table, '1') # 去掉图片中的噪声(孤立点) out = cut_noise(out) # 保存图片 # out.save('E://figures/img_gray.jpg') # 仅识别图片中的数字 # text = pytesseract.image_to_string(out, config='digits') # 识别图片中的数字和字母 text = pytesseract.image_to_string(out) # 去掉识别结果中的特殊字符 exclude_char_list = ' .:\\|\'\"?![],()~@#$%^&*_+-={};<>/¥—' text = ''.join([x for x in text if x not in exclude_char_list]) return text if __name__=='__main__': a = OCR_lmj('D:\\jd\\img\\2.jpg') print(a)