A:找到两个相邻字符使后者小于前者即可。
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 300010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n;char s[N]; signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read();scanf("%s",s+1); int x=0; for (int i=2;i<=n;i++) if (s[i]<s[i-1]) {x=i;break;} if (x==0) cout<<"NO"; else cout<<"YES"<<endl<<x-1<<' '<<x; return 0; //NOTICE LONG LONG!!!!! }
B:设(n-11)/2=x,8的出现次数=y。显然x>=y时,后手一直拿8就可以阻止先手取胜。考虑x<y的情况,后手的最优策略仍然是一直拿最靠前的8,而先手应该拿最靠前的非8的数。于是找到第x+1个8的位置check一下。
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n;char s[N]; signed main() { n=read();scanf("%s",s+1); int cnt=0;for (int i=1;i<=n;i++) if (s[i]=='8') cnt++; if ((n-11)/2>=cnt) {cout<<"NO";return 0;} cnt=(n-11)/2; for (int i=1;i<=n;i++) if (s[i]=='8') { cnt--; if (cnt==-1) { if (i-1<=n-11) cout<<"YES"; else cout<<"NO"; break; } } return 0; //NOTICE LONG LONG!!!!! }
C:a相邻作差取gcd,看b中是否有gcd的因子。
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 300010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);} ll read() { ll x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m; ll a[N],b[N]; signed main() { n=read(),m=read(); for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<=m;i++) b[i]=read(); sort(a+1,a+n+1); ll u=0; for (int i=2;i<=n;i++) u=gcd(u,a[i]-a[i-1]); for (int i=1;i<=m;i++) if (u%b[i]==0) { cout<<"YES"<<endl; cout<<a[1]<<' '<<i; return 0; } cout<<"NO"; return 0; //NOTICE LONG LONG!!!!! }
D:显然修改的子串一定会被选入答案,这样序列可以被分为五部分,即不被选入答案→被选入答案但不修改→被选入答案且修改→被选入答案但不修改→不被选入答案。可以整一些前缀和,但写起来可能有点麻烦。更简单的做法是f[i][0/1/2/3/4]表示当前在哪个阶段。https://www.cnblogs.com/Gloid/p/10358542.html受这一场的D启发。
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 300010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N]; ll ans,s[N],ssuf[N],pre[N],suf[N],f[N][5]; signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(),m=read(); for (int i=1;i<=n;i++) a[i]=read(); memset(f,200,sizeof(f)); for (int j=0;j<5;j++) f[0][j]=0; for (int i=1;i<=n+1;i++) { for (int j=0;j<5;j++) for (int k=0;k<=j;k++) f[i][j]=max(f[i][j],f[i-1][k]); f[i][1]+=a[i]; f[i][2]+=1ll*a[i]*m; f[i][3]+=a[i]; } cout<<f[n+1][4]; }
E:写着脸上的拉格朗日插值。直接代入求值会T,先求出多项式即可。或者也可以高斯消元。所以询问次数是用来干啥的?
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define P 1000003 #define N 1000010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int a[20],Inv[P],f[20],g[20]; int inv(int a){return Inv[a];} /*int calc(int n,int x) { int ans=0; for (int i=0;i<n;i++) { int u=1;for (int j=0;j<n;j++) if (i!=j) u=1ll*u*(P+i-j)%P; u=1ll*a[i]*inv(u)%P; for (int j=0;j<n;j++) if (i!=j) u=1ll*u*(P+x-j)%P; ans=(ans+u)%P; } return ans; }*/ int calc(int x) { int s=f[11]; for (int i=10;i>=0;i--) s=(1ll*s*x+f[i])%P; return s; } signed main() { Inv[0]=Inv[1]=1;for (int i=2;i<P;i++) Inv[i]=P-1ll*(P/i)*Inv[P%i]%P; for (int i=0;i<12;i++) { cout<<"?"<<' '<<i<<endl; a[i]=read(); } for (int i=0;i<12;i++) { memset(g,0,sizeof(g));g[0]=1; for (int j=0;j<12;j++) if (i!=j) { for (int k=0;k<12;k++) g[k]=1ll*g[k]*inv((i-j+P)%P)%P; for (int k=11;k>=1;k--) g[k]=(g[k-1]-1ll*g[k]*j%P+P)%P; g[0]=(P-1ll*g[0]*j%P)%P; } for (int j=0;j<12;j++) f[j]=(f[j]+1ll*g[j]*a[i])%P; } for (int i=0;i<P;i++) if (calc(i)==0) {cout<<"!"<<' '<<i<<endl;return 0;} cout<<"!"<<' '<<-1<<endl; return 0; //NOTICE LONG LONG!!!!! }
F:怎么感觉这么经典!哇我好像做过原题!https://www.cnblogs.com/Gloid/p/10291212.html 这个题一方面去掉了边权且没有重边,一方面要输出方案。前者当然是喜大普奔,不用判一些乱七八糟的情况了。后者求出dp数组后递归输出即可,在预处理能否串成链时记录一下串成的链是怎样的。复杂度O(2n*n3+3n*n2),但这个dp的常数一看就优秀的没边。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 14 #define M 1000 #define inf 100000000 #define rep(i,t,S) for (int t=S,i=lg2[t&-t];t;t^=t&-t,i=lg2[t&-t]) char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N][N],f[1<<N],size[1<<N],lg2[1<<N]; bool g[N][N][1<<N]; int way[N][N][1<<N][N+1]; struct data{int x,y,z; }edge[M]; void print(int S) { if (size[S]==1) return; for (int i=S-1&S;i;i=i-1&S) rep(x,u,i^S) rep(y,v,i^S) { if (g[x][y][i]&&f[i^S]+size[i]+1==f[S]) { cout<<y+1<<' '<<way[x][y][i][1]+1<<endl; for (int t=1;t<way[x][y][i][0];t++) cout<<way[x][y][i][t]+1<<' '<<way[x][y][i][t+1]+1<<endl; cout<<way[x][y][i][way[x][y][i][0]]+1<<' '<<x+1<<endl; print(i^S); return; } if (x==y) break; } } int main() { n=read(),m=read(); for (int i=1;i<=m;i++) { edge[i].x=read()-1,edge[i].y=read()-1,edge[i].z=1; g[edge[i].x][edge[i].y][0]=g[edge[i].y][edge[i].x][0]=1; } memset(f,42,sizeof(f));for (int i=0;i<n;i++) f[1<<i]=0,lg2[1<<i]=i; for (int i=1;i<(1<<n);i++) size[i]=size[i^(i&-i)]+1; for (int i=1;i<(1<<n);i++) { rep(x,p,(1<<n)-1^i) rep(y,q,(1<<n)-1^i) if (x!=y||i!=(i&-i)) rep(j,o,i) if (g[j][y][i^(1<<j)]&&g[x][j][0]) { g[x][y][i]=1; for (int u=0;u<=way[j][y][i^(1<<j)][0];u++) way[x][y][i][u]=way[j][y][i^(1<<j)][u]; way[x][y][i][++way[x][y][i][0]]=j; break; } } for (int i=1;i<(1<<n);i++) for (int j=i-1&i;j;j=j-1&i) rep(x,u,i^j) rep(y,v,i^j) { if (g[x][y][j]&&f[i^j]+size[j]+1<f[i]) f[i]=f[i^j]+size[j]+1; if (x==y) break; } printf("%d\n",f[(1<<n)-1]); print((1<<n)-1); return 0; }
小小号打的。result:rank 1 rating +297 精准的没有超过小号(