- Data Augmentation For Bounding Boxes: Building Input Pipelines for your detector
- pytorch中检测分割模型中图像预处理探究
def letterbox_image(img, inp_dim): '''resize image with unchanged aspect ratio using padding Parameters ---------- img : numpy.ndarray Image inp_dim: tuple(int) shape of the reszied image Returns ------- numpy.ndarray: Resized image ''' inp_dim = (inp_dim, inp_dim) img_w, img_h = img.shape[1], img.shape[0] w, h = inp_dim new_w = int(img_w * min(w/img_w, h/img_h)) new_h = int(img_h * min(w/img_w, h/img_h)) resized_image = cv2.resize(img, (new_w,new_h)) # 按照target_szie/(长边)为scale进行resize,然后填充空白区域 canvas = np.full((inp_dim[1], inp_dim[0], 3), 0) canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image return canvas class Resize(object): """Resize the image in accordance to `image_letter_box` function in darknet The aspect ratio is maintained. The longer side is resized to the input size of the network, while the remaining space on the shorter side is filled with black color. **This should be the last transform** Parameters ---------- inp_dim : tuple(int) tuple containing the size to which the image will be resized. Returns ------- numpy.ndaaray Sheared image in the numpy format of shape `HxWxC` numpy.ndarray Resized bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, inp_dim): self.inp_dim = inp_dim def __call__(self, img, bboxes): w,h = img.shape[1], img.shape[0] img = letterbox_image(img, self.inp_dim) # 按照target_szie/(长边)为scale进行resize,然后填充空白区域 scale = min(self.inp_dim/h, self.inp_dim/w) bboxes[:,:4] *= (scale) new_w = scale*w new_h = scale*h inp_dim = self.inp_dim del_h = (inp_dim - new_h)/2 del_w = (inp_dim - new_w)/2 add_matrix = np.array([[del_w, del_h, del_w, del_h]]).astype(int) bboxes[:,:4] += add_matrix # 根据空白区域补充 img = img.astype(np.uint8) return img, bboxes class RandomHorizontalFlip(object): """Randomly horizontally flips the Image with the probability *p* Parameters ---------- p: float The probability with which the image is flipped Returns ------- numpy.ndaaray Flipped image in the numpy format of shape `HxWxC` numpy.ndarray Tranformed bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, p=0.5): self.p = p def __call__(self, img, bboxes): img_center = np.array(img.shape[:2])[::-1]/2 # 得到图像中心坐标(x,y) img_center = np.hstack((img_center, img_center)) if random.random() < self.p: img = img[:, ::-1, :] # 图像水平翻转 bboxes[:, [0, 2]] += 2*(img_center[[0, 2]] - bboxes[:, [0, 2]]) # 将box(x1,y1,x2,y2)的x坐标翻转, box_w = abs(bboxes[:, 0] - bboxes[:, 2]) bboxes[:, 0] -= box_w # 翻转后的坐标,x1>x2;该操作交换坐标,使得x1<x2 bboxes[:, 2] += box_w return img, bboxes class RandomScale(object): """Randomly scales an image Bounding boxes which have an area of less than 25% in the remaining in the transformed image is dropped. The resolution is maintained, and the remaining area if any is filled by black color. Parameters ---------- scale: float or tuple(float) if **float**, the image is scaled by a factor drawn randomly from a range (1 - `scale` , 1 + `scale`). If **tuple**, the `scale` is drawn randomly from values specified by the tuple Returns ------- numpy.ndaaray Scaled image in the numpy format of shape `HxWxC` numpy.ndarray Tranformed bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, scale = 0.2, diff = False): self.scale = scale if type(self.scale) == tuple: assert len(self.scale) == 2, "Invalid range" assert self.scale[0] > -1, "Scale factor can't be less than -1" assert self.scale[1] > -1, "Scale factor can't be less than -1" else: assert self.scale > 0, "Please input a positive float" self.scale = (max(-1, -self.scale), self.scale) self.diff = diff def __call__(self, img, bboxes): #Chose a random digit to scale by img_shape = img.shape if self.diff: scale_x = random.uniform(*self.scale) scale_y = random.uniform(*self.scale) else: scale_x = random.uniform(*self.scale) scale_y = scale_x resize_scale_x = 1 + scale_x resize_scale_y = 1 + scale_y # The logic of the Scale transformation is fairly simple. # We use the OpenCV function cv2.resize to scale our image, and scale our bounding boxes by the scale factor(s). img= cv2.resize(img, None, fx = resize_scale_x, fy = resize_scale_y) bboxes[:,:4] *= [resize_scale_x, resize_scale_y, resize_scale_x, resize_scale_y] canvas = np.zeros(img_shape, dtype = np.uint8) # 原始图像大小 y_lim = int(min(resize_scale_y,1)*img_shape[0]) x_lim = int(min(resize_scale_x,1)*img_shape[1]) canvas[:y_lim,:x_lim,:] = img[:y_lim,:x_lim,:] # 有可能变大或者变小,如果变大,取其中一部分,变小,黑色填充 img = canvas bboxes = clip_box(bboxes, [0,0,1 + img_shape[1], img_shape[0]], 0.25) # 对变换后的box:处理超出边界和面积小于阈值drop操作; return img, bboxes class RandomTranslate(object): # 随机平移 """Randomly Translates the image Bounding boxes which have an area of less than 25% in the remaining in the transformed image is dropped. The resolution is maintained, and the remaining area if any is filled by black color. Parameters ---------- translate: float or tuple(float) if **float**, the image is translated by a factor drawn randomly from a range (1 - `translate` , 1 + `translate`). If **tuple**, `translate` is drawn randomly from values specified by the tuple Returns ------- numpy.ndaaray Translated image in the numpy format of shape `HxWxC` numpy.ndarray Tranformed bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, translate = 0.2, diff = False): self.translate = translate if type(self.translate) == tuple: assert len(self.translate) == 2, "Invalid range" assert self.translate[0] > 0 & self.translate[0] < 1 assert self.translate[1] > 0 & self.translate[1] < 1 else: assert self.translate > 0 and self.translate < 1 self.translate = (-self.translate, self.translate) # 必须在(0-1)之间 self.diff = diff def __call__(self, img, bboxes): #Chose a random digit to scale by img_shape = img.shape #translate the image #percentage of the dimension of the image to translate translate_factor_x = random.uniform(*self.translate) translate_factor_y = random.uniform(*self.translate) if not self.diff: translate_factor_y = translate_factor_x canvas = np.zeros(img_shape).astype(np.uint8) corner_x = int(translate_factor_x*img.shape[1]) corner_y = int(translate_factor_y*img.shape[0]) #change the origin to the top-left corner of the translated box # 相当于做一个平移操作,做超过边界处理等 orig_box_cords = [max(0,corner_y), max(corner_x,0), min(img_shape[0], corner_y + img.shape[0]), min(img_shape[1],corner_x + img.shape[1])] mask = img[max(-corner_y, 0):min(img.shape[0], -corner_y + img_shape[0]), max(-corner_x, 0):min(img.shape[1], -corner_x + img_shape[1]),:] canvas[orig_box_cords[0]:orig_box_cords[2], orig_box_cords[1]:orig_box_cords[3],:] = mask img = canvas bboxes[:,:4] += [corner_x, corner_y, corner_x, corner_y] # box做一个平移操作 bboxes = clip_box(bboxes, [0,0,img_shape[1], img_shape[0]], 0.25) return img, bboxes class RandomRotate(object): """Randomly rotates an image Bounding boxes which have an area of less than 25% in the remaining in the transformed image is dropped. The resolution is maintained, and the remaining area if any is filled by black color. Parameters ---------- angle: float or tuple(float) if **float**, the image is rotated by a factor drawn randomly from a range (-`angle`, `angle`). If **tuple**, the `angle` is drawn randomly from values specified by the tuple Returns ------- numpy.ndaaray Rotated image in the numpy format of shape `HxWxC` numpy.ndarray Tranformed bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, angle = 10): self.angle = angle if type(self.angle) == tuple: assert len(self.angle) == 2, "Invalid range" else: self.angle = (-self.angle, self.angle) def __call__(self, img, bboxes): angle = random.uniform(*self.angle) w,h = img.shape[1], img.shape[0] cx, cy = w//2, h//2 img = rotate_im(img, angle) # 旋转后,为了保证整图信息,仿射后的图像变大,先求仿射矩阵,然后变换整图; corners = get_corners(bboxes) # 得到四个角点 corners = np.hstack((corners, bboxes[:,4:])) corners[:,:8] = rotate_box(corners[:,:8], angle, cx, cy, h, w) # 根据仿射矩阵得到box旋转后的坐标 new_bbox = get_enclosing_box(corners) # we have to find the tightest rectangle parallel to the sides of the image containing the tilted rectangular box. scale_factor_x = img.shape[1] / w scale_factor_y = img.shape[0] / h img = cv2.resize(img, (w,h)) # 旋转后变大的图像恢复到原图像大小; new_bbox[:,:4] /= [scale_factor_x, scale_factor_y, scale_factor_x, scale_factor_y] bboxes = new_bbox bboxes = clip_box(bboxes, [0,0,w, h], 0.25) return img, bboxes class RandomShear(object): # 旋转的特殊情况 """Randomly shears an image in horizontal direction Bounding boxes which have an area of less than 25% in the remaining in the transformed image is dropped. The resolution is maintained, and the remaining area if any is filled by black color. Parameters ---------- shear_factor: float or tuple(float) if **float**, the image is sheared horizontally by a factor drawn randomly from a range (-`shear_factor`, `shear_factor`). If **tuple**, the `shear_factor` is drawn randomly from values specified by the tuple Returns ------- numpy.ndaaray Sheared image in the numpy format of shape `HxWxC` numpy.ndarray Tranformed bounding box co-ordinates of the format `n x 4` where n is number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box """ def __init__(self, shear_factor = 0.2): self.shear_factor = shear_factor if type(self.shear_factor) == tuple: assert len(self.shear_factor) == 2, "Invalid range for scaling factor" else: self.shear_factor = (-self.shear_factor, self.shear_factor) shear_factor = random.uniform(*self.shear_factor) def __call__(self, img, bboxes): shear_factor = random.uniform(*self.shear_factor) w,h = img.shape[1], img.shape[0] if shear_factor < 0: img, bboxes = HorizontalFlip()(img, bboxes) # 一种巧妙的方法,来避免... M = np.array([[1, abs(shear_factor), 0],[0,1,0]]) nW = img.shape[1] + abs(shear_factor*img.shape[0]) bboxes[:,[0,2]] += ((bboxes[:,[1,3]]) * abs(shear_factor) ).astype(int) img = cv2.warpAffine(img, M, (int(nW), img.shape[0])) # 只进行水平变换 if shear_factor < 0: img, bboxes = HorizontalFlip()(img, bboxes) img = cv2.resize(img, (w,h)) scale_factor_x = nW / w bboxes[:,:4] /= [scale_factor_x, 1, scale_factor_x, 1] return img, bboxes
通过多线程进行加速:
def parse_data(data): img = np.array(cv2.imread(data)) h, w, c = img.shape assert c == 3 img = cv2.resize(img, (scale_size, scale_size)) img = img.astype(np.float32) shift = (scale_size - crop_size) // 2 img = img[shift: shift + crop_size, shift: shift + crop_size, :] # Flip image at random if flag is selected if np.random.random() < 0.5: # self.horizontal_flip and img = cv2.flip(img, 1) img = (img - np.array(127.5)) / 127.5 return img def parse_data_without_augmentation(data): img = np.array(cv2.imread(data)) h, w, c = img.shape assert c == 3 img = cv2.resize(img, (crop_size, crop_size)) img = img.astype(np.float32) img = (img - np.array(127.5)) / 127.5 return img
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/10 11:15 # @Author : Whu_DSP # @File : dped_dataloader.py import multiprocessing as mtp import os import cv2 import numpy as np from scipy import misc def parse_data(filename): I = np.asarray(misc.imread(filename)) I = np.float16(I) / 255 return I
class Dataloader: def __init__(self, dped_dir, type_phone, batch_size, is_training, im_shape): self.works = mtp.Pool(10) self.dped_dir = dped_dir self.phone_type = type_phone self.batch_size = batch_size self.is_training = is_training self.im_shape = im_shape self.image_list, self.dslr_list = self._get_data_file_list() self.num_images = len(self.image_list) self._cur = 0 self._perm = None self._shuffle_index() # init order def _get_data_file_list(self): if self.is_training: directory_phone = os.path.join(self.dped_dir, str(self.phone_type), 'training_data', str(self.phone_type)) directory_dslr = os.path.join(self.dped_dir, str(self.phone_type), 'training_data', 'canon') else: directory_phone = os.path.join(self.dped_dir, str(self.phone_type), 'test_data', 'patches', str(self.phone_type)) directory_dslr = os.path.join(self.dped_dir, str(self.phone_type), 'test_data', 'patches', 'canon') # num_images = len([name for name in os.listdir(directory_phone) if os.path.isfile(os.path.join(directory_phone, name))]) image_list = [os.path.join(directory_phone, name) for name in os.listdir(directory_phone)] dslr_list = [os.path.join(directory_dslr, name) for name in os.listdir(directory_dslr)] return image_list, dslr_list def _shuffle_index(self): '''randomly permute the train order''' self._perm = np.random.permutation(np.arange(self.num_images)) self._cur = 0 def _get_next_minbatch_index(self): """return the indices for the next minibatch""" if self._cur + self.batch_size > self.num_images: self._shuffle_index() next_index = self._perm[self._cur:self._cur + self.batch_size] self._cur += self.batch_size return next_index def get_minibatch(self, minibatch_db): """return minibatch datas for train/test""" if self.is_training: jobs = self.works.map(parse_data, minibatch_db) else: jobs = self.works.map(parse_data, minibatch_db) index = 0 images_data = np.zeros([self.batch_size, self.im_shape[0], self.im_shape[1], 3]) for index_job in range(len(jobs)): images_data[index, :, :, :] = jobs[index_job] index += 1 return images_data def next_batch(self): """Get next batch images and labels""" db_index = self._get_next_minbatch_index() minibatch_db = [] for i in range(len(db_index)): minibatch_db.append(self.image_list[db_index[i]]) minibatch_db_t = [] for i in range(len(db_index)): minibatch_db_t.append(self.dslr_list[db_index[i]]) images_data = self.get_minibatch(minibatch_db) dslr_data = self.get_minibatch(minibatch_db_t) return images_data, dslr_data if __name__ == "__main__": data_dir = "F:\\ranjiewen\\TF_EnhanceDPED\\data\\dped" train_loader = Dataloader(data_dir, "iphone", 32, True,[100,100]) test_loader = Dataloader(data_dir, "iphone", 32, False, [100, 100]) for i in range(10): image_batch,label_batch = train_loader.next_batch() print(image_batch.shape,label_batch.shape) print("-------------------------------------------") image_batch,label_batch = test_loader.next_batch() print(image_batch.shape,label_batch.shape)