KNN之手写数字识别


如何在 sklearn 中使用 KNN

在 Python 的 sklearn 工具包中有 KNN 算法。KNN 既可以做分类器,也可以做回归。如果是做分类,你需要引用:

from sklearn.neighbors import KNeighborsClassifier

如果是做回归,你需要引用:

from sklearn.neighbors import KNeighborsRegressor

如何用 KNN 对手写数字进行识别分类

我们先来规划下整个 KNN 分类的流程:

整个训练过程基本上都会包括三个阶段:

  1. 数据加载:我们可以直接从 sklearn 中加载自带的手写数字数据集;

  2. 准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可;

  3. 分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

首先是加载数据和对数据的探索:

# 加载数据
digits = load_digits()
data = digits.data
# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])
# 将第一幅图像显示出来
plt.gray()
plt.imshow(digits.images[0])
plt.show()


# 运行结果:
(1797, 64)
[[ 0.  0.  5. 13.  9.  1.  0.  0.]
 [ 0.  0. 13. 15. 10. 15.  5.  0.]
 [ 0.  3. 15.  2.  0. 11.  8.  0.]
 [ 0.  4. 12.  0.  0.  8.  8.  0.]
 [ 0.  5.  8.  0.  0.  9.  8.  0.]
 [ 0.  4. 11.  0.  1. 12.  7.  0.]
 [ 0.  2. 14.  5. 10. 12.  0.  0.]
 [ 0.  0.  6. 13. 10.  0.  0.  0.]]
0

我们对原始数据集中的第一幅进行数据可视化,可以看到图像是个8*8 的像素矩阵,上面这幅图像是一个“0”,从训练集的分类标注中我们也可以看到分类标注为“0”。

sklearn 自带的手写数字数据集一共包括了 1797 个

样本,每幅图像都是 8*8 像素的矩阵。因为并没有专门的测试集,所以我们需要对数据集做划分,划分成训练集和测试集。因为KNN 算法和距离定义相关,我们需要对数据进行规范化处理,采用 Z-Score 规范化,代码如下:

# 分割数据,将 25% 的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.25, random_state=33)
# 采用 Z-Score 规范化
ss = preprocessing.StandardScaler()
train_ss_x = ss.fit_transform(train_x)
test_ss_x = ss.transform(test_x)

然后我们构造一个 KNN 分类器 knn,把训练集的数据传入构造好的 knn,并通过测试集进行结果预测,与测试集的结果进行对比,得到 KNN 分类器准确率,代码如下:

# 创建 KNN 分类器
knn = KNeighborsClassifier() 
knn.fit(train_ss_x, train_y) 
predict_y = knn.predict(test_ss_x) 
print("KNN 准确率: %.4lf" % accuracy_score(predict_y, test_y))


# 运行结果:
KNN 准确率: 0.9756

这样我们就构造好了一个 KNN 分类器。之前我们还讲过 SVM、朴素贝叶斯和决策树分类。我们用手写数字数据集一起来训练下这些分类器,然后对比下哪个分类器的效果更好。代码如下:

# 创建 SVM 分类器
svm = SVC()
svm.fit(train_ss_x, train_y)
predict_y=svm.predict(test_ss_x)
print('SVM 准确率: %0.4lf' % accuracy_score(predict_y, test_y))
# 采用 Min-Max 规范化
mm = preprocessing.MinMaxScaler()
train_mm_x = mm.fit_transform(train_x)
test_mm_x = mm.transform(test_x)
# 创建 Naive Bayes 分类器
mnb = MultinomialNB()
mnb.fit(train_mm_x, train_y) 
predict_y = mnb.predict(test_mm_x) 
print(" 多项式朴素贝叶斯准确率: %.4lf" % accuracy_score(predict_y, test_y))
# 创建 CART 决策树分类器
dtc = DecisionTreeClassifier()
dtc.fit(train_mm_x, train_y) 
predict_y = dtc.predict(test_mm_x) 
print("CART 决策树准确率: %.4lf" % accuracy_score(predict_y, test_y))


# 运行结果:
SVM 准确率: 0.9867
多项式朴素贝叶斯准确率: 0.8844
CART 决策树准确率: 0.8556

这里需要注意的是,我们在做多项式朴素贝叶斯分类的时候,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到 [0,1] 范围内。

####    多项式朴素贝叶斯实际上是符合多项式分布,不会存在负数。而高斯朴素贝叶斯呈现的是高斯分布,也就是正态分布,比如均值为0,方差为1的标准正态分布,可以存在负数。

整理下这 4 个分类器的结果:

# 相关的导包
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM