今天,我们就以链家网南京地区为例,来学习爬取链家网的成交房源数据。
这里推荐使用火狐浏览器,并且安装firebug和firepath两款插件,你会发现,这两款插件会给我们后续的数据提取带来很大的方便。
首先创建一个名称为lianjia的项目。
需求分析
爬取数据的第一步当然是确定我们的需求,大方向就是我们想拿到南京地区的房源成交信息,但是具体的细节信息,我们需要从网页来看,,我们直接在浏览器中输入以下的网址https://nj.lianjia.com/chengjiao/,会显示南京地区的成交的房源信息,包括名称,房屋简介,地理位置,成交日期,成交价格,成交单价等详细信息,这样我们就确定了我们想要的信息,我们在items.py文件中定义如下的一些字段。
#items.py from scrapy import Item,Field class LianjiaItem(Item): region = Field() #行政区域 href = Field() #房源链接 name = Field() #房源名称 style = Field() #房源结构 area = Field() #小区 orientation = Field() #朝向 decoration = Field() #装修 elevator = Field() #电梯 floor = Field() #楼层高度 build_year = Field() #建造时间 sign_time = Field() #签约时间 unit_price = Field() #每平米单价 total_price = Field() #总价 fangchan_class = Field() #房产类型 school = Field() #周边学校 subway = Field() #周边地铁
请注意,以上的信息,并不是每一套房源都有的,比如下面的地铁,学校,很多房源都是没有的。
问题
-
你会发现一个问题,每一个页面会呈现30条的房源信息,最下面一共可以显示100页,总计最多也就是3000条信息,南京地区的成交房源信息肯定不止这区区的3000条,那么如果直接从这个页面通过翻页来获取数据,最多只能获取到3000条信息,所以我们这里需要转思路。
-
还是这个页面,可以看到页面上部列出了南京地区的行政区,我们随意选择一个,会发现,新的页面依然是每一页30条,共计100页,但是我们有11个行政区,那么其数量也是翻了好几倍了。
-
这个时候,你可能还是不满足,我们想办法看一下是不是还可以进一步向下划分,没错那就是小区,我们把房源从11个行政区划分到小区上,以小区为单位,每一个小区上面还有房源数据,这样的话,我们的信息可以说比较全面了,当然了,我们需要做的工作也是要翻倍的。
总结
这里我们通过分析,总结出了如下的思路:
- 以行政区为单位,先获取南京地区所有的小区信息
- 以小区为单位,获取每一个小区里面的房源数据
- 最后就是获取具体的每一个房源的信息。
具体实施
现在明确了我们的思路,下面就开始具体的实施。
编写spider.py文件
from scrapy import Spider,Request import re from lxml import etree import json from urllib.parse import quote from lianjia.items import LianjiaItem class Lianjia_spider(Spider): name = 'lianjia' allowed_domains = ['nj.lianjia.com'] regions = {'gulou':'鼓楼', 'jianye':'建邺', 'qinhuai':'秦淮', 'xuanwu':'玄武', 'yuhuatai':'雨花台', 'qixia':'栖霞', 'jiangning':'江宁', 'liuhe':'六合', 'pukou':'浦口', 'lishui':'涟水', 'gaochun':'高淳' } def start_requests(self): for region in list(self.regions.keys()): url = "https://nj.lianjia.com/xiaoqu/" + region + "/" yield Request(url=url, callback=self.parse, meta={'region':region}) #用来获取页码 def parse(self, response): region = response.meta['region'] selector = etree.HTML(response.text) sel = selector.xpath("//div[@class='page-box house-lst-page-box']/@page-data")[0] # 返回的是字符串字典 sel = json.loads(sel) # 转化为字典 total_pages = sel.get("totalPage") for i in range(int(total_pages)): url_page = "https://nj.lianjia.com/xiaoqu/{}/pg{}/".format(region, str(i + 1)) yield Request(url=url_page, callback=self.parse_xiaoqu, meta={'region':region}) def parse_xiaoqu(self,response): selector = etree.HTML(response.text) xiaoqu_list = selector.xpath('//ul[@class="listContent"]//li//div[@class="title"]/a/text()') for xq_name in xiaoqu_list: url = "https://nj.lianjia.com/chengjiao/rs" + quote(xq_name) + "/" yield Request(url=url, callback=self.parse_chengjiao, meta={'xq_name':xq_name, 'region':response.meta['region']}) def parse_chengjiao(self,response): xq_name = response.meta['xq_name'] selector = etree.HTML(response.text) content = selector.xpath("//div[@class='page-box house-lst-page-box']") #有可能为空 total_pages = 0 if len(content): page_data = json.loads(content[0].xpath('./@page-data')[0]) total_pages = page_data.get("totalPage") # 获取总的页面数量 for i in range(int(total_pages)): url_page = "https://nj.lianjia.com/chengjiao/pg{}rs{}/".format(str(i+1), quote(xq_name)) yield Request(url=url_page, callback=self.parse_content, meta={'region': response.meta['region']}) def parse_content(self,response): selector = etree.HTML(response.text) cj_list = selector.xpath("//ul[@class='listContent']/li") for cj in cj_list: item = LianjiaItem() item['region'] = self.regions.get(response.meta['region']) href = cj.xpath('./a/@href') if not len(href): continue item['href'] = href[0] content = cj.xpath('.//div[@class="title"]/a/text()') if len(content): content = content[0].split() # 按照空格分割成一个列表 item['name'] = content[0] item['style'] = content[1] item['area'] = content[2] content = cj.xpath('.//div[@class="houseInfo"]/text()') if len(content): content = content[0].split('|') item['orientation'] = content[0] item['decoration'] = content[1] if len(content) == 3: item['elevator'] = content[2] else: item['elevator'] = '无' content = cj.xpath('.//div[@class="positionInfo"]/text()') if len(content): content = content[0].split() item['floor'] = content[0] if len(content) == 2: item['build_year'] = content[1] else: item['build_year'] = '无' content = cj.xpath('.//div[@class="dealDate"]/text()') if len(content): item['sign_time'] = content[0] content = cj.xpath('.//div[@class="totalPrice"]/span/text()') if len(content): item['total_price'] = content[0] content = cj.xpath('.//div[@class="unitPrice"]/span/text()') if len(content): item['unit_price'] = content[0] content = cj.xpath('.//span[@class="dealHouseTxt"]/span/text()') if len(content): for i in content: if i.find("房屋满") != -1: # 找到了返回的是非-1得数,找不到的返回的是-1 item['fangchan_class'] = i elif i.find("号线") != -1: item['subway'] = i elif i.find("学") != -1: item['school'] = i yield item
我们对上面关键的地方进行解释:
- start_requests
这个就是我们以行政区为单位,目的是爬取每一个行政区的小区列表。 - parse
对行政区返回的response进行解析,我们目的是拿到这个大的行政区,包含多少个页面,其中的total_pages
就是具体的页面数,接下来就是按照页码请求每一个页面。 - parse_xiaoqu
上面返回了每一个页面的信息,这个时候我们就把当前页面的小区列表拿到,而后,在针对小区列表,每一个小区进行一次请求。 - parse_chengjiao
解析小区的页面数,上面说到了,我们请求了每一个小区数据,这个小区肯定不止包含一页的数据,那么我们这个方法就是将这个小区包含的页面数抽取出来,而后针对每一个页面进行请求 - parse_content
这个方法就是解析具体的页面了,可以看到,这个方法里面包含了非常多的条件判断,这是因为,我们之前定义的item字段里面的信息,并不是每一个小区都有的,就是说,我们要的信息他不是一个规规矩矩的信息,很多的房源没有提供相关的信息,比如地铁,周边学校等等的信息,我们这里就是如果有这个信息,我们就把它提取出来,如果没有的话,我们就给他自定义一个内容
。最后将item提交给item pipeline进行后续的处理。
由于这一节的信息比较多,我们就把它分为两个小节,在下一节中,我们对拿到的数据进行后续的处理。