http://www.cnblogs.com/pengsixiong/p/5050833.html
一:CSV数据
一】:导入数据
1)从CSV文件读入数据:pd.read_csv("文件名"),默认以逗号为分隔符
D:\data\ex1.csv文件内容: D:\data\ex2.csv文件内容
a,b,c,d,message 1,2,3,4,hello
1,2,3,4,hello 5,6,7,8,world
5,6,7,8,world 9,10,11,12,foo
9,10,11,12,foo
In [3]: df1 = pd.read_csv('D:\data\ex1.csv') #打开后默认添加index为从0自增长,columns默认用第一行数据 In [4]: df1 Out[4]: a b c d message 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo In [15]: df2 = pd.read_csv('D:\data\ex2.csv') In [16]: df2 Out[16]: 1 2 3 4 hello 0 5 6 7 8 world 1 9 10 11 12 foo In [17]: df2 = pd.read_csv('D:\data\ex2.csv',header=None) #header参数指定columns都为从0自增长的数 In [18]: df2 Out[18]: 0 1 2 3 4 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo In [8]: df2 = pd.read_csv('D:\data\ex2.csv',names=list('abcde')) #用names参数指定columns的值 In [9]: df2 Out[9]: a b c d e 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo In [13]: df2 = pd.read_csv('D:\data\ex2.csv',names=list('abcde'),index_col='e') #用index_col用指定的columns首元素作为index In [14]: df2 Out[14]: a b c d e hello 1 2 3 4 world 5 6 7 8 foo 9 10 11 12
2)其他格式:pd.read_table('文件名', sep='划分依据'),划分依据可用正则表达式【\s:空格等不可见字符】
注:read_table方法几乎可以读所有的表格型数据,包括txt,csv等等
D:\data\ex3.txt D:\data\ex4.txt
A B C D A B C
aaa -0.2 -1.02 -0.62 aaa -0.2 -1.02 -0.62
bbb 0.93 0.3 -0.03 bbb 0.93 0.3 -0.03
ccc -0.26 -0.39 -0.22 ccc -0.26 -0.39 -0.22
ddd -0.87 -0.35 1.1 ddd -0.87 -0.35 1.1
In [37]: df1 = pd.read_table('D:\data\ex3.txt',sep='\s+') In [38]: df1 Out[38]: A B C #以最小列数为准,取dataframe数据,且第一行数据作为columns,剩下的如果第一列作为多出则作为index,否者从0自增数作为index aaa -0.20 -1.02 -0.62 bbb 0.93 0.30 -0.03 ccc -0.26 -0.39 -0.22 ddd -0.87 -0.35 1.10 In [44]: df2 = pd.read_table('D:\data\ex4.txt',sep='\s+') In [45]: df2 Out[45]: D A B C 0 aaa -0.20 -1.02 -0.62 1 bbb 0.93 0.30 -0.03 2 ccc -0.26 -0.39 -0.22 3 ddd -0.87 -0.35 1.10
3)扩展技巧
read_csv/read_table函数参数
D:\data\ex5.csv D:\data\ex6.csv
#hey! something,a,b,c,d,message
a,b,c,d,message one,1,2,3,4,NA
#just wanted to make things two,5,6,,8,world
#who are you three,9,10,11,12,foo
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [46]: df5 = pd.read_csv('D:\data\ex5.csv') In [47]: df5 Out[47]: #hey! a b c d message #just wanted to make things NaN NaN NaN NaN #who are you NaN NaN NaN NaN 1 2 3 4 hello 5 6 7 8 world 9 10 11 12 foo In [48]: df5 = pd.read_csv('D:\data\ex5.csv',skiprows=[0,2,3]) In [49]: df5 Out[49]: a b c d message 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo In [59]: df5 = pd.read_csv('D:\data\ex6.csv',nrows = 2) In [60]: df5 Out[60]: something a b c d message 0 one 1 2 3 4 NaN 1 two 5 6 NaN 8 world In [55]: df6 = pd.read_csv('D:\data\ex6.csv',na_values={'message':['foo','NA'],'something':['two']}) In [56]: df6 Out[56]: something a b c d message 0 one 1 2 3 4 NaN 1 NaN 5 6 NaN 8 world 2 three 9 10 11 12 NaN
二】 数据的写出:to_csv('文件名' , [index=..., header=...] )
In [7]: df = pd.read_csv('D:\data\ex1.csv',header=None) In [8]: df Out[8]: 0 1 2 3 4 0 a b c d message 1 1 2 3 4 hello 2 5 6 7 8 world 3 9 10 11 12 foo In[9]:df.to_csv('D:\data\out1.csv') In[10]:df.to_csv('D:\data\out2.csv',index=False,header=False) #即是把index和columns都弃掉,header表示columns
二:JSON格式
Json类型基本数据类型有对象(字典),数组(列表),字符串,数值,bool 以及 null。
注:若是字典,键的类型必须是string
In [22]: js = """{ ....: "name":"Wes", ....: "places_lived":["US","Spain","Germany"], ....: "pet":null, ....: "siblings":[{"name":"Scott","age":25,"pet":"Zuko"}, ....: {"name":"Katie","age":33,"pet":"Cisco"}]} ....: """ In [26]: import json In [27]: data = json.loads(js) #将json格式转化为python格式 In [28]: data Out[28]: {u'name': u'Wes', u'pet': None, u'places_lived': [u'US', u'Spain', u'Germany'], u'siblings': [{u'age': 25, u'name': u'Scott', u'pet': u'Zuko'}, {u'age': 33, u'name': u'Katie', u'pet': u'Cisco'}]} In [29]: #a_js = json.dumps(data) #将python格式转化为json格式 #最简单构造方法就是提取其中的数据,注意columns list中的值对应json数据中的需要提取的键并将其作为columns In [31]: siblings = pd.DataFrame(data['siblings'],columns=['name','age']) In [32]: siblings Out[32]: name age Scott 25 Katie 33
三:XML与HTML
pass
四:二进制 179
pass
五:Excel 180
pass
七:HTML 与 Web API 181
许多网站提供基于json格式的数据API,通过request等库可以获取
pass
六:数据库 182
pass
七:MongDB
184