机器学习入门-决策树的可视化展示


from sklearn import tree
from sklearn.datasets.california_housing import fetch_california_housing
housing = fetch_california_housing()


dtr = tree.DecisionTreeRegressor(max_depth=2)
dtr.fit(housing.data[:, [6, 7]], housing.target)

dot_data = \
          tree.export_graphviz(
              dtr, 
              out_file = None, 
              feature_names=housing.feature_name[6:8],
              filled = True, 
              impurity = False,
              rounded = True
          )

import pydotplus
graph = pydotplus.graph_from_dot_data(dot_data)
graph.get_nodes()[7].set_fillcolor('#FFF2DD')
from IPython.display import Image 
Image(graph.create_png())


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM