特征工程之归一化及标准化


特征的预处理:对数据进行处理

特征处理:通过特定的统计方法(数学方法)将数据转换成算法要求的数据

 

归一化:

多个特征同等重要的时候需要进行归一化处理
目的:使得某一个特征对最终结果不会造成更大影响

归一化API:

 

标准化:

归一化及标准化实例代码:

# 数据预处理
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler


def mm():
    '''
    归一化处理
    :return:None
    '''
    # mm = MinMaxScaler()
    mm = MinMaxScaler(feature_range=(2, 3))
    data = mm.fit_transform([[90, 2, 10, 40], [60, 4, 15, 45], [75, 3, 13, 46]])
    print(data)
    return None


def stand():
    '''
    标准化缩放
    :return:None
    '''
    std = StandardScaler()
    data = std.fit_transform([[1, -1, 3], [2, 4, 2], [4, 6, -1]])
    print(data)
    return None


if __name__ == "__main__":
    mm()
    stand()

运行结果:

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM