import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import KFold from sklearn.metrics import roc_auc_score path = 'mnist.npz' f = np.load(path) X_train , y_train = f['x_train'], f['y_train'] X_test , y_test = f['x_test'], f['y_test'] X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255. X_test /= 255. X_train = X_train.reshape(60000,784) X_test = X_test.reshape(10000,784) roc_Decision = 0 tree = DecisionTreeClassifier() tree.fit(X_train,y_train) y_pred = tree.predict(X_test) sum=0.0 for i in range(10000): if(y_pred[i] == y_test[i]): sum = sum+1 print('Test set score: %f' % (sum/10000.)) # Test set score: 0.877100