算法设计与分析课程的时间空间复杂度


算法设计与分析课程的时间空间复杂度:

总结

算法 时间复杂度 空间复杂度 说明
Hanoi $ O(2^n) $ $ O(n) $ 递归使用
会场安排问题 \(O(nlogn)\) \(O(n)\) 贪心
哈夫曼树编码 \(O(nlogn)\) $$O(n)$$ 贪心 $$O(n^2) $$(未采用特殊数据结构)
dijkstra \(O(n^2)\) \(O(n)\) 单源最短路径问题,贪心
Prim \(O(n^2)\) \(O(n)\) 最小生成树
Kruskal $$O(eloge)$$ \(O(e)\) 最小生成树
大整数乘法(四次) \(O(n^2)\) \(O(log_2n)\) 分治
大整数乘法(三次) \(O(n^{log_23})\) \(O(log_2n)\) 分治
二分查找(递归) \(O(log_2n)\) \(O(log_2n)\) 分治
二分查找(非递归) \(O(log_2n)\) \(O(1)\) 分治
循环日程表 \(O(n^2)\) \(O(log_2n)\) 分治
归并排序 $$O(nlog_2n)$$ \(O(n)\) 分治
快速排序 $$O(nlog_2n)$$ \(O(n)\) 分治
棋盘覆盖问题 $$O(4^k)$$ $$ O(k)$$ 分治
Fibonacci(递归) $$ O({1.628}^n) $$ \(O(n)\) 动态规划
Fibonacci(非递归) \(O(n)\) \(O(n)\) 动态规划
最长公共子序列(非递归) \(O(mn)-O(n^2)\) \(O(mn)-O(n^2)\) 动态规划
最长公共子序列(递归) \(O(2^{min(m,n)})\) \(O(min(m,n))\) 动态规划
矩阵连乘(递归) \(O(2^n)\) \(O(n^2)\) 动态规划
矩阵连乘(DP) \(O(n^3)\) \(O(n^2)\) 动态规划
0-1背包(DP) \(O(nw)->O(n2^n)\) \(O(nw)\) 动态规划
0-1背包(贪心) \(O(nlog_2n)\) \(O(n)\) 贪心法
DFS $$O( V +
BFS $$O( V +
子集树递归回溯 \(O(2^n)\) 搜索法
排列树递归回溯 \(O(n!)\) 搜索法
满m叉树递归回溯 \(O(m^n)\) 搜索法
n皇后满m叉树 \(O(nm^n)\) \(O(n^n)\) 搜索法
n皇后排列树 \(O(n^2(n-1)!)\) \(O(n!)\) 搜索法
0-1背包回溯法 \(O(n2^n)\) \(O(2^n)\) 搜索法
最大团问题 \(O(n2^n)\) \(O(2^n)\) 搜索法
旅行商问题TSP \(O(n!)\) \(O(n!)\) 搜索法
图的m着色GCP \(O(nm^n)\) \(O(m^n)\) 搜索法
队列式0-1背包 $$O(n2^n)$$ \(O(2^n)\) 搜索法
优先队列0-1背包 \(O(n2^n)\) \(O(2^n)\) 搜索法
队列式旅行商 \(O(n!)\) \(O(n!)\) 搜索法
优先队列式旅行商 \(O(n!)\) \(O(n!)\) 搜索法
布线问题 队列式 \(O(nm)\) \(O(nm)\) 搜索法


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM