1. 类与实例
一个最简单的类的定义是这样的:
>>> class Team(object): pass >>> Arsenal = Team() >>> Arsenal <__main__.Team object at 0x000000893F60CB38> >>> Team <class '__main__.Team'> >>> Arsenal.Manager = 'Wenger' >>> Arsenal.Manager 'Wenger' >>>
__init__函数可以用来初始化:
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
小结:
类是创建实例的模板,而实例则是一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同。
2. 访问限制
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,例如:
class Student(object): def __init__(self, name, score): self.__name = name self.__score = score def print_score(self): print('%s: %s' % (self.__name, self.__score))
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name
和实例变量.__score
了
>>> bart = Student('Bart Simpson', 59) >>> bart.__name Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'Student' object has no attribute '__name'
这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name
和get_score
这样的方法
class Student(object): ... def get_name(self): return self.__name def get_score(self): return self.__score def set_score(self, score): self.__score = score
你也许会问,原先那种直接通过bart.score = 99
也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object): ... def set_score(self, score): if 0 <= score <= 100: self.__score = score else: raise ValueError('bad score')
需要注意的是,在Python中,变量名类似__xxx__
的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__
、__score__
这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name
是因为Python解释器对外把__name
变量改成了_Student__name
,所以,仍然可以通过_Student__name
来访问__name
变量:
>>> bart._Student__name 'Bart Simpson'
但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name
改成不同的变量名。
总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。
最后注意下面的这种错误写法
>>> bart = Student('Bart Simpson', 59) >>> bart.get_name() 'Bart Simpson' >>> bart.__name = 'New Name' # 设置__name变量! >>> bart.__name 'New Name'
表面上看,外部代码“成功”地设置了__name
变量,但实际上这个__name
变量和class内部的__name
变量不是一个变量!内部的__name
变量已经被Python解释器自动改成了_Student__name
,而外部代码给bart
新增了一个__name
变量。不信试试:
>>> bart.get_name() # get_name()内部返回self.__name 'Bart Simpson'
3. 继承和多态
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
比如,我们已经编写了一个名为Animal
的class,有一个run()
方法可以直接打印:
class Animal(object): def run(self): print('Animal is running...')
当我们需要编写Dog
和Cat
类时,就可以直接从Animal
类继承:
class Dog(Animal): pass class Cat(Animal): pass
对于Dog
来说,Animal
就是它的父类,对于Animal
来说,Dog
就是它的子类。Cat
和Dog
类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial
实现了run()
方法,因此,Dog
和Cat
作为它的子类,什么事也没干,就自动拥有了run()
方法:
dog = Dog() dog.run() cat = Cat() cat.run()
运行结果:
Animal is running... Animal is running...
当然,也可以对子类增加一些方法,比如Dog类:
class Dog(Animal): def run(self): print('Dog is running...') def eat(self): print('Eating meat...')
继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog
还是Cat
,它们run()
的时候,显示的都是Animal is running...
,符合逻辑的做法是分别显示Dog is running...
和Cat is running...
,因此,对Dog
和Cat
类改进如下:
class Dog(Animal): def run(self): print('Dog is running...') class Cat(Animal): def run(self): print('Cat is running...')
再次运行,结果如下:
Dog is running... Cat is running...
当子类和父类都存在相同的run()
方法时,我们说,子类的run()
覆盖了父类的run()
,在代码运行的时候,总是会调用子类的run()
。这样,我们就获得了继承的另一个好处:多态。
要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:
a = list() # a是list类型 b = Animal() # b是Animal类型 c = Dog() # c是Dog类型
判断一个变量是否是某个类型可以用isinstance()
判断:
>>> isinstance(a, list) True >>> isinstance(b, Animal) True >>> isinstance(c, Dog) True
看来a
、b
、c
确实对应着list
、Animal
、Dog
这3种类型。
但是等等,试试:
>>> isinstance(c, Animal)
True
看来c
不仅仅是Dog
,c
还是Animal
!
所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:
>>> b = Animal() >>> isinstance(b, Dog) False
要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal
类型的变量:
def run_twice(animal): animal.run() animal.run()
当我们传入Animal
的实例时,run_twice()
就打印出:
>>> run_twice(Animal()) Animal is running... Animal is running...
当我们传入Dog
的实例时,run_twice()
就打印出:
>>> run_twice(Dog()) Dog is running... Dog is running...
当我们传入Cat
的实例时,run_twice()
就打印出:
>>> run_twice(Cat()) Cat is running... Cat is running...
看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise
类型,也从Animal
派生:
class Tortoise(Animal): def run(self): print('Tortoise is running slowly...')
当我们调用run_twice()
时,传入Tortoise
的实例:
>>> run_twice(Tortoise()) Tortoise is running slowly... Tortoise is running slowly...
你会发现,新增一个Animal
的子类,不必对run_twice()
做任何修改,实际上,任何依赖Animal
作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。
多态的好处就是,当我们需要传入Dog
、Cat
、Tortoise
……时,我们只需要接收Animal
类型就可以了,因为Dog
、Cat
、Tortoise
……都是Animal
类型,然后,按照Animal
类型进行操作即可。由于Animal
类型有run()
方法,因此,传入的任意类型,只要是Animal
类或者子类,就会自动调用实际类型的run()
方法,这就是多态的意思:
对于一个变量,我们只需要知道它是Animal
类型,无需确切地知道它的子类型,就可以放心地调用run()
方法,而具体调用的run()
方法是作用在Animal
、Dog
、Cat
还是Tortoise
对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal
的子类时,只要确保run()
方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
对扩展开放:允许新增Animal
子类;
对修改封闭:不需要修改依赖Animal
类型的run_twice()
等函数。
静态语言 vs 动态语言
对于静态语言(例如Java)来说,如果需要传入Animal
类型,则传入的对象必须是Animal
类型或者它的子类,否则,将无法调用run()
方法。
对于Python这样的动态语言来说,则不一定需要传入Animal
类型。我们只需要保证传入的对象有一个run()
方法就可以了:
>>> def run_twice(animal): animal.run() animal.run() >>> class Timer(object): def run(self): print('Start...') >>> run_twice(Timer()) Start... Start...
这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。
Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()
方法,返回其内容。但是,许多对象,只要有read()
方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()
方法的对象。
4. 获取对象信息
当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?
首先,我们来判断对象类型,使用type()
函数:
基本类型都可以用type()
判断:
>>> type(123) <class 'int'> >>> type('str') <class 'str'> >>> type(None) <type(None) 'NoneType'>
但是type()
函数返回的是什么类型呢?它返回对应的Class类型。
使用isinstance()
对于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()
函数。
>>> isinstance('a', str) True >>> isinstance(123, int) True >>> isinstance(b'a', bytes) True
并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:
>>> isinstance([1, 2, 3], (list, tuple)) True >>> isinstance((1, 2, 3), (list, tuple)) True
使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC') ['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']
类似__xxx__
的属性和方法在Python中都是有特殊用途的,比如__len__
方法返回长度。在Python中,如果你调用len()
函数试图获取一个对象的长度,实际上,在len()
函数内部,它自动去调用该对象的__len__()
方法,所以,下面的代码是等价的:
>>> len('ABC') 3 >>> 'ABC'.__len__() 3
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
>>> class MyObject(object): ... def __init__(self): ... self.x = 9 ... def power(self): ... return self.x * self.x ... >>> obj = MyObject()
紧接着,可以测试该对象的属性:
>>> hasattr(obj, 'x') # 有属性'x'吗? True >>> obj.x 9 >>> hasattr(obj, 'y') # 有属性'y'吗? False >>> setattr(obj, 'y', 19) # 设置一个属性'y' >>> hasattr(obj, 'y') # 有属性'y'吗? True >>> getattr(obj, 'y') # 获取属性'y' 19 >>> obj.y # 获取属性'y' 19
如果试图获取不存在的属性,会抛出AttributeError的错误
>>> getattr(obj, 'z') # 获取属性'z' Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'MyObject' object has no attribute 'z'
可以传入一个default参数,如果属性不存在,就返回默认值:
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404 404
也可以获得对象的方法:
>>> hasattr(obj, 'power') # 有属性'power'吗? True >>> getattr(obj, 'power') # 获取属性'power' <bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>> >>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn >>> fn # fn指向obj.power <bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>> >>> fn() # 调用fn()与调用obj.power()是一样的 81
通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写,一个正确的用法的例子如下
def readImage(fp): if hasattr(fp, 'read'): return readData(fp) return None
假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()
就派上了用场。
请注意,在Python这类动态语言中,根据鸭子类型,有read()
方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()
方法返回的是有效的图像数据,就不影响读取图像的功能。
5. 实例属性和类属性
如果Student
类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student
类所有:
class Student(object): name = 'Student'
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object): ... name = 'Student' ... >>> s = Student() # 创建实例s >>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性 Student >>> print(Student.name) # 打印类的name属性 Student >>> s.name = 'Michael' # 给实例绑定name属性 >>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性 Michael >>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问 Student >>> del s.name # 如果删除实例的name属性 >>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了 Student
从上面的例子可以看出,在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。