神经网络- filter滤波器size的选择与规律


记录一下filter,也就是用来提取要识别object边缘信息的过滤器的一些规律以及经验:

首先, 大部分卷积神经网络滤波器都会采用逐层递增(1⇒ 3 ⇒ 5 ⇒ 7)的方式。其次,每经过一次池化层,卷积层过滤器的深度都会乘以 2。

提一个知识点,也就是权值共享,每当filter扫过feature map的时候,扫出来的矩阵的参数,在同一个卷积核kenal中, 实现参数共享,参数共享的好处是可以减轻过拟合,和降低计算量。

 

2018/10/12继续总结:
卷积核的大小,往往根据需要训练样本的形状,在整个图片中所占的位置比重,来进行调整,非常看好可变形卷积的发展。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM