特征工程 —— 特征重要性排序(Random Forest)


树模型天然会对特征进行重要性排序,以分裂数据集,构建分支;

1. 使用 Random Forest

from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor


boston_data = load_boston()
X = boston_data['data']
y = boston_data['target']
    # dir(boston_data) ⇒ 查看其支持的属性为 ['DESCR', 'data', 'feature_names', 'target']
rf = RandomForestRegressor()
rf.fit(X, y)

print(sorted(zip(boston_data['feature_names'], map(lambda x: round(x, 4), 
                                                   rf.feature_importances_)),
             key=operator.itemgetter(1), reverse=True))


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM