tensorflow中的Supervisor


  tf.train.Supervisor()可以帮我们简化一些事情,可以保存模型参数和Summary,它有以下的作用:

  1)自动去checkpoint加载数据或初始化数据 ,因此我们就不需要手动初始化或者从checkpoint中加载数据

  2)自身有一个Saver,可以用来保存checkpoint,因此不需要创建Saver,直接使用Supervisor里的Saver即可

  3)有一个summary_computed用来保存Summary,因此不需要创建summary_writer

  因此从这里看,Supervisor相当于将一些功能集成到一起了,具体代码实现

import tensorflow as tf


a = tf.Variable(1)
b = tf.Variable(2)
c = tf.add(a, b)
update = tf.assign(a, c)
tf.summary.scalar("a", a)
init_op = tf.initialize_all_variables()
merged_summary_op = tf.summary.merge_all()
sv = tf.train.Supervisor(logdir="./tmp/", init_op=init_op)  # 直接初始化
saver = sv.saver
with sv.managed_session() as sess:
    for i in range(10000):
        update_ = sess.run(update)
        if i % 10 == 0:
            merged_summary = sess.run(merged_summary_op)
            sv.summary_computed(sess, merged_summary, global_step=i)  # 直接将summary保存

        if i % 100 == 0:
            saver.save(sess, save_path="./tmp/", global_step=i)  # 直接将模型参数保存

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM