拉格朗日插值公式


拉格朗日插值公式

背公式吧,没什么好说的了。。。
假装\(P\)是一个关于\(x\)\(n\)次多项式,我们已经知道了\(P(i),i\in[0,n]\)的值。

\[P(x)=\sum_{i=0}^n(-1)^{n-i}P(i)\frac{x(x-1)(x-2)...(x-n)}{(n-i)!i!(x-i)} \]

上面这个东西是拉格朗日插值公式的特殊情况。
一般情况下是任意的\(n+1\)个给定的点\(x_i\)以及值\(P(x_i)\)
丢下公式就跑

\[P(x)=\sum_{i=0}^{n}P(x_i)\prod_{j=0,j\ne i}^{n}\frac{x-x_j}{x_i-x_j} \]

模板戳这里


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM