平台:Xilinx Zynq UltraScale+MPSoC ZCU102 平台 内核版本: linux-4.4
linux qspi驱动是为了解决spi驱动异步操作的冲突问题,引入了"队列化"的概念。其基本的原理是把具体需要传输的message放入到队列中,启动一个内核线
程检测队列中是否有在等待的message,如果有则启动具体的传输。
1 相关结构体:
一个SPI控制器对应一个spi_master结构体,通过它和挂在对应控制器下面的flash进行通信。每一次传输由spi_message来表示,spi_message挂入到spi_master
queue队列中,spi_message又由多个传输片段spi_transfer构成。
struct spi_master{ struct device dev; // 控制器本身对应的设备 struct list_head list; // 通过这个插槽把spi_master链入全局的spi_master_list,一个芯片内部可以有多个SPI控制器 s16 bus_num; // 用于识别一个spi控制器,一个SOC或板子可以有多个spi控制器 // 该控制器对应的SPI总线编号(由0开始) /* chipselects will be integral to many controllers; some others * might use board-specific GPIOs. */ u16 num_chipselect; // 该spi控制器支持多少个从芯片 u16 dma_alignment; /* spi_device.mode flags understood by this controller driver */ u16 mode_bits; // 工作模式 /* bitmask of supported bits_per_word for transfers */ u32 bits_per_word_mask; /* limits on transfer speed */ u32 min_speed_hz; u32 max_speed_hz; /* other constraints relevant to this driver */ u16 flags; /* lock and mutex for SPI bus locking */ spinlock_t bus_lock_spinlock; struct mutex bus_lock_mutex; /* flag indicating that the SPI bus is locked for exclusive use */ bool bus_lock_flag; /* Setup mode and clock, etc (spi driver may call many times). * * IMPORTANT: this may be called when transfers to another * device are active. DO NOT UPDATE SHARED REGISTERS in ways * which could break those transfers. */ int (*setup)(struct spi_device *spi); // 设置spi控制器的参数 /* 把message加入队列中,master的主要工作就是处理消息队列。选中一个芯片 * 把数据传出去 */ int (*transfer)(struct spi_device *spi, struct spi_message *mesg); /* 释放master的回调函数 */ void (*cleanup)(struct spi_device *spi); bool queued; struct kthread_worker kworker; // struct task_struct *kworker_task; // 具体的内核线程,用于处理kworker下面的每个work struct kthread_work pump_messages; spinlock_t queue_lock; struct list_head queue; // 等待传输的消息队列 struct spi_message *cur_msg; // 当前正在处理的消息 bool cur_msg_mapped; struct completion xfer_completion; size_t max_dma_len; /* 用于准备硬件资源 */ int (*prepare_transfer_hardware)(struct spi_master *master); /* 每个消息的原子传送回调函数 */ int (*transfer_one_message)(struct spi_master *master, struct spi_message *mesg); int (*prepare_message)(struct spi_master *master, struct spi_message *message); /* * These hooks are for drivers that use a generic implementation * of transfer_one_message() provied by the core. */ void (*set_cs)(struct spi_device *spi, bool enable); int (*transfer_one)(struct spi_master *master, struct spi_device *spi, struct spi_transfer *transfer); void (*handle_err)(struct spi_master *master, struct spi_message *message); /* gpio chip select */ int *cs_gpios; } struct spi_message { /* 一个多段的传输结构 */ struct list_head transfers; // 具体的传输片段 struct spi_device *spi; /* 这个传输放入具体设备的队列 */ unsigned is_dma_mapped:1; /* completion is reported through a callback */ void (*complete)(void *context); // 当所有的transfers传输完了以后会被调用到 void *context; unsigned frame_length; // 所有片段的传输总数据 unsigned actual_length; // 已经传输的数据 int status; struct list_head queue; /* 通过该字段把本结构体挂入到对应的master的queue中 */ void *state; }; struct spi_transfer { /* 最小的传输单元 */ const void *tx_buf; void *rx_buf; unsigned len; // rx tx buf字节总数 dma_addr_t tx_dma; dma_addr_t rx_dma; struct sg_table tx_sg; struct sg_table rx_sg; unsigned cs_change:1; unsigned tx_nbits:3; unsigned rx_nbits:3; u8 bits_per_word; // 0 默认 非0 u16 delay_usecs; u32 speed_hz; struct list_head transfer_list; // 通过这个挂入到 spi_message中 };
画出spi_master结构体和spi_message以及spi_transfer结构体的关系如图1所示:
图1 spi_master和spi_message以及spi_transfer关系
2 驱动层次
static struct platform_driver zynqmp_qspi_driver = { /* 平台驱动 */ .probe = zynqmp_qspi_probe, .remove = zynqmp_qspi_remove, .driver = { /* struct device_driver driver; */ .name = "zynqmp-qspi", .of_match_table = zynqmp_qspi_of_match, .pm = &zynqmp_qspi_dev_pm_ops, }, }; struct bus_type platform_bus_type = { /* 平台总线类型 */ .name = "platform", .dev_groups = platform_dev_groups, .match = platform_match, .uevent = platform_uevent, .pm = &platform_dev_pm_ops, }; /* 注册平台驱动 */ __platform_driver_register(struct platform_driver *drv, struct module *owner) // drivers/base/platform.c drv->driver.bus = &platform_bus_type; // 注意是平台总线 drv->driver.probe = platform_drv_probe; // 平台驱动探测函数 driver_register(&drv->driver) // 注册驱动 driver_find(drv->name, drv->bus); // .name = "zynqmp-qspi", &platform_bus_type; 看是否已经注册过了同名的驱动 ret = bus_add_driver(drv); driver_attach(struct device_driver *drv) bus_for_each_dev(drv->bus, NULL, drv, __driver_attach); /* 通过bus设备下面的设备列表进行匹配 */ __driver_attach(struct device *dev, void *data) // data = device_driver struct device_driver *drv = data; driver_match_device(drv, dev) // 匹配上了才会往下走!!!!!!!!!!!!!否则直接去匹配下一个可能的设备 return drv->bus->match ? drv->bus->match(dev, drv) : 1 /* 调用bus下面的match函数, 既platform_match函数, 主要通过platform_driver下面的id_table以及名字匹配*/ /* 至此已经找到了设备 */ if (!dev->driver) // 还未绑定驱动,调用probe函数把驱动和设备绑定到一起 driver_probe_device(drv, dev); really_probe(dev, drv); if (dev->bus->probe) { ret = dev->bus->probe(dev); // 未设置, 为空 } else if (drv->probe) { ret = drv->probe(dev); // 走这个分支,为之前设置的platform_drv_probe } platform_drv_probe(struct device *_dev) struct platform_driver *drv = to_platform_driver(_dev->driver); // 获取宿主结构体 platform_driver zynqmp_qspi_driver ret = drv->probe(dev); // 调用zynqmp_qspi_probe函数 zynqmp_qspi_probe // 实际上是匹配控制器对应的设备 struct spi_master *master; struct device *dev = &pdev->dev; master = spi_alloc_master(&pdev->dev, sizeof(*xqspi)); // 分配master空间,设置num_chipselect bus_num master->dev.of_node = pdev->dev.of_node; // 应该是dtb里面的spi控制器对应的节点??? 设置时钟,使能时钟 以及控制器zynqmp_qspi_init_hw(xqspi); 获取终端资源 设置master的变量setup set_cs transfer_one prepare_transfer_hardware unprepare_transfer_hardware max_speed_hz bits_per_word_mask mode_bits spi_register_master(master); // 注册master 设置num_chipselect bus_num INIT_LIST_HEAD(&master->queue); /* 初始化master下面的message队列 */ spin_lock_init(&master->queue_lock); dev_set_name(&master->dev, "spi%u", master->bus_num); status = device_add(&master->dev); // 把设备加入到系统中,平台总线上?? spi_master_initialize_queue(master); // 初始化队列 master->transfer = spi_queued_transfer; master->transfer_one_message = spi_transfer_one_message; ret = spi_init_queue(master); /* 初始化和启动工作队列 */ /* 启动一个内核线程,该线程工作对象为工作队列master->kworker,工作函数为kthread_worker_fn,后面会介绍 */ master->kworker_task = kthread_run(kthread_worker_fn, &master->kworker, "%s", dev_name(&master->dev)); /* 初始化工作实例master->pump_messages, 其回调的函数为spi_pump_messages */ init_kthread_work(&master->pump_messages, spi_pump_messages); master->queued = true; ret = spi_start_queue(master); /* 把工作实例master->pump_messages挂入到工作队列master->kworker中 */ queue_kthread_work(&master->kworker, &master->pump_messages); list_add_tail(&master->list, &spi_master_list); // 把master挂入总的链表spi_master_list of_register_spi_devices(master); // 注册spi控制器设备下面的子设备,这个时候才开始设置spi设备下面的flash芯片 for_each_available_child_of_node(master->dev.of_node, nc) { spi = of_register_spi_device(master, nc); struct spi_device *spi = spi_alloc_device(master); spi->master = master; // 将flash设备和master控制器连接到一起 spi->dev.parent = &master->dev; // 父设备为spi控制器 spi->dev.bus = &spi_bus_type; // 明确挂入到了spi_bus下面 of_modalias_node(nc, spi->modalias, sizeof(spi->modalias)); // 通过dtb里面的compatible获取驱动 rc = of_property_read_u32(nc, "reg", &value); // 通过dtb里面的reg条目获取设备的地址,既对应的片选片选 spi->chip_select = value; // 选中或者不选中对应的芯片 //获取 spi-rx-bus-width spi-tx-bus-width spi-max-frequency 等芯片级的信息并且设置 of_property_read_u32(nc, "spi-max-frequency", &value); spi->max_speed_hz = value; rc = spi_add_device(spi); // 注册spi设备 bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); // 通过spi->chip_select spi->master来匹配 spi->cs_gpio = master->cs_gpios[spi->chip_select]; // 设置本芯片为master的哪个片选 spi_setup(spi); // 设置spi设备 status = spi->master->setup(spi); // 调用spi_master 的 setup函数 spi_set_cs(spi, false); // 禁止片选 device_add(&spi->dev); // 加入设备,匹配具体的驱动 error = bus_add_device(dev); bus_probe_device(dev); device_initial_probe(dev); __device_attach(dev, true); bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); driver_probe_device(drv, dev); really_probe(dev, drv); if (dev->bus->probe) { ret = dev->bus->probe(dev); } else if (drv->probe) { ret = drv->probe(dev); // m25p_probe } m25p_probe ret = spi_nor_scan(nor, flash_name, mode); // 建立 spi-nor mtd 芯片的工作模式 dummy 扇区等 return mtd_device_parse_register(&nor->mtd, NULL, &ppdata, data ? data->parts : NULL, data ? data->nr_parts : 0); // 注册mtd分区
继续分析剩下的函数kthread_worker_fn和spi_pump_messages
int kthread_worker_fn(void *worker_ptr) struct kthread_worker *worker = worker_ptr; // 为设置的master->kworker struct kthread_work *work; repeat: if (!list_empty(&worker->work_list)) { /* 工作队列下面的work_list不为空,则取出工作实例 */ work = list_first_entry(&worker->work_list, struct kthread_work, node); list_del_init(&work->node); // 从工作队列中摘下具体的实例 } worker->current_work = work; work->func(work); // 调用工作实例下面的func执行,func为spi_pump_messages goto repeat; spi_pump_messages /* 取出queue下面的message,赋给master->cur_msg */ master->cur_msg = list_first_entry(&master->queue, struct spi_message, queue); list_del_init(&master->cur_msg->queue); ret = master->prepare_transfer_hardware(master); // 准备硬件资源 ret = master->transfer_one_message(master, master->cur_msg); // 传输
补齐最后的数据构造以及上传到queue以及处理过程:
struct kthread_worker kworker; // 每个spi控制器上都有的一个工作队列 struct kthread_worker { spinlock_t lock; // 自旋锁 struct list_head work_list; // 工作队列上的工作实例队列 struct task_struct *task; // 具体执行数据传输的进程 struct kthread_work *current_work; // 工作队列当前正在处理的工作实例 }; struct task_struct *kworker_task; // 处理工作队列的线程 struct kthread_work pump_messages; struct kthread_work { struct list_head node; // 通过node把work挂入到工作队列中 // 当调度到本work时执行的回调函数,具体为spi_pump_messages kthread_work_func_t func; // void (*kthread_work_func_t)(struct kthread_work *work); struct kthread_worker *worker; // 具体属于的工作队列 }; // spi读len个数据到buf中,spi为具体要进行数据传输的设备 static inline int spi_read(struct spi_device *spi, void *buf, size_t len) // 构造spi_transfer结构体 struct spi_transfer t = { .rx_buf = buf, .len = len, }; struct spi_message m; spi_message_add_tail(&t, &m);// 把spi_transfer挂入到spi_message中 return spi_sync(spi, &m); __spi_sync(spi, message, 0); struct spi_master *master = spi->master; // 获取到spi控制器,在初始化的时候就确定了 message->spi = spi; // 把message和具体的spi设备挂钩 status = __spi_queued_transfer(spi, message, false); list_add_tail(&msg->queue, &master->queue); // 把message挂入到master的queue中 __spi_pump_messages(master, false); // 对message进行"抽取" // 把master->pump_messages工作实例挂入到master->kworker中,唤醒内核线程处理queue里面的message queue_kthread_work(&master->kworker, &master->pump_messages); return; wait_for_completion(&done); // 等待传输完成 status = message->status; return status; // 异步传输spi数据,主要是利用master->transfer函数进行处理 int spi_async(struct spi_device *spi, struct spi_message *message) ret = __spi_async(spi, message); return master->transfer(spi, message); return ret;
数据的写流程和读基本一致!!
qspi驱动的基本流程如图2所示,红色的步骤表示数据的构造以及处理过程。
图2 qspi驱动的基本流程