表示不变量(Representation Invariant)与抽象函数(Abstract Function)


主要内容来自MIT6.031 Software Construction课程及HIT 软件构造课程。

 

 

我们先来介绍两种类型空间的值:

一、 Space of representation values (表示空间) R

表示空间由事实上实现的实体值构成。换句话说,由不同的、对抽象类型的实现的对象相应表示(Representation)的值组成。

二、 Space of abstract values (抽象空间) A

抽象空间由抽象类型设计支持的类型组成。直观来说,就是抽象类型中设计的域或者说是支持变量。它们不是实际存在的实体,但是我们透过它们来理解抽象类型的元素。

 

一个例子:

 

 我们在这个例子里我们使用字符串来表示字母的集合。

 

 R和A之间的映射:

1. 每一个抽象空间的值都被映射到,是一个满射(surjective)

2. 一些抽象类型的值被不止一个表示变量值映射,所以不是一个单射(not injective)

3. 不是所有表示变量值都在映射当中,不是一个双射(not bijective)

 

抽象函数(Abstract Function)

抽象函数是表示从表示空间到抽象空间映射的函数

 

表示不变量(Rep Invariant)

表示不变量将表示变量值映射成一个布尔值。

 

可以将RI理解成一个表示值的子集,如果一个RI的值在到AF的映射当中,那么这个RI也就在这个子集当中,相应地,布尔值为真。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM