tensorboard学习笔记


TensorBoard 默认是不会记录每个节点的用时、耗费的内存大小等这些信息的,那么如何才能在图上显示这些信息呢?关键就是如下这些代码,主要就是在 sess.run() 中加入 options 和 run_metadata 参数。

#定义TensorFlow运行选项,设置trace_lever FULL_TRACE
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
#定义TensorFlow运行元信息,记录训练运算时间和内存占用等信息
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step],feed_dict=feed_dict(True),options=run_options,run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)

tensorboard图表解释,https://blog.csdn.net/u010099080/article/details/77426577


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM