进程间的五种通信方式介绍


进程间通信(IPC)介绍

 

进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

以Linux中的C语言编程为例。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

  1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

  2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

  3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

  1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

  2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

  3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

2、原型:

1 #include <unistd.h>
2 int pipe(int fd[2]); // 返回值:若成功返回0,失败返回-1

当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

要关闭管道只需将这两个文件描述符关闭即可。

3、例子

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

复制代码
 1 #include<stdio.h>
 2 #include<unistd.h>  3  4 int main()  5 {  6 int fd[2]; // 两个文件描述符  7  pid_t pid;  8 char buff[20];  9 10 if(pipe(fd) < 0) // 创建管道 11 printf("Create Pipe Error!\n"); 12 13 if((pid = fork()) < 0) // 创建子进程 14 printf("Fork Error!\n"); 15 else if(pid > 0) // 父进程 16  { 17 close(fd[0]); // 关闭读端 18 write(fd[1], "hello world\n", 12); 19  } 20 else 21  { 22 close(fd[1]); // 关闭写端 23 read(fd[0], buff, 20); 24 printf("%s", buff); 25  } 26 27 return 0; 28 }
复制代码

二、FIFO

FIFO,也称为命名管道,它是一种文件类型。

1、特点

  1. FIFO可以在无关的进程之间交换数据,与无名管道不同。

  2. FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2、原型

1 #include <sys/stat.h>
2 // 返回值:成功返回0,出错返回-1 3 int mkfifo(const char *pathname, mode_t mode);

其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

  • 若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

  • 若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

3、例子

FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

write_fifo.c

复制代码
 1 #include<stdio.h>
 2 #include<stdlib.h> // exit  3 #include<fcntl.h> // O_WRONLY  4 #include<sys/stat.h>  5 #include<time.h> // time  6  7 int main()  8 {  9 int fd; 10 int n, i; 11 char buf[1024]; 12  time_t tp; 13 14 printf("I am %d process.\n", getpid()); // 说明进程ID 15 16 if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO 17  { 18 perror("Open FIFO Failed"); 19 exit(1); 20  } 21 22 for(i=0; i<10; ++i) 23  { 24 time(&tp); // 取系统当前时间 25 n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp)); 26 printf("Send message: %s", buf); // 打印 27 if(write(fd, buf, n+1) < 0) // 写入到FIFO中 28  { 29 perror("Write FIFO Failed"); 30  close(fd); 31 exit(1); 32  } 33 sleep(1); // 休眠1秒 34  } 35 36 close(fd); // 关闭FIFO文件 37 return 0; 38 }
复制代码

read_fifo.c

复制代码
 1 #include<stdio.h>
 2 #include<stdlib.h>  3 #include<errno.h>  4 #include<fcntl.h>  5 #include<sys/stat.h>  6  7 int main()  8 {  9 int fd; 10 int len; 11 char buf[1024]; 12 13 if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道 14 perror("Create FIFO Failed"); 15 16 if((fd = open("fifo1", O_RDONLY)) < 0) // 以读打开FIFO 17  { 18 perror("Open FIFO Failed"); 19 exit(1); 20  } 21 22 while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道 23 printf("Read message: %s", buf); 24 25 close(fd); // 关闭FIFO文件 26 return 0; 27 }
复制代码

在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:

复制代码
 1 [cheesezh@localhost]$ ./write_fifo  2 I am 5954 process.  3 Send message: Process 5954's time is Mon Apr 20 12:37:28 2015  4 Send message: Process 5954's time is Mon Apr 20 12:37:29 2015  5 Send message: Process 5954's time is Mon Apr 20 12:37:30 2015  6 Send message: Process 5954's time is Mon Apr 20 12:37:31 2015  7 Send message: Process 5954's time is Mon Apr 20 12:37:32 2015  8 Send message: Process 5954's time is Mon Apr 20 12:37:33 2015  9 Send message: Process 5954's time is Mon Apr 20 12:37:34 2015 10 Send message: Process 5954's time is Mon Apr 20 12:37:35 2015 11 Send message: Process 5954's time is Mon Apr 20 12:37:36 2015 12 Send message: Process 5954's time is Mon Apr 20 12:37:37 2015
复制代码

 

复制代码
 1 [cheesezh@localhost]$ ./read_fifo  2 Read message: Process 5954's time is Mon Apr 20 12:37:28 2015  3 Read message: Process 5954's time is Mon Apr 20 12:37:29 2015  4 Read message: Process 5954's time is Mon Apr 20 12:37:30 2015  5 Read message: Process 5954's time is Mon Apr 20 12:37:31 2015  6 Read message: Process 5954's time is Mon Apr 20 12:37:32 2015  7 Read message: Process 5954's time is Mon Apr 20 12:37:33 2015  8 Read message: Process 5954's time is Mon Apr 20 12:37:34 2015  9 Read message: Process 5954's time is Mon Apr 20 12:37:35 2015 10 Read message: Process 5954's time is Mon Apr 20 12:37:36 2015 11 Read message: Process 5954's time is Mon Apr 20 12:37:37 2015
复制代码

上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

三、消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

1、特点

  1. 消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

  2. 消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

  3. 消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2、原型

复制代码
1 #include <sys/msg.h>
2 // 创建或打开消息队列:成功返回队列ID,失败返回-1 3 int msgget(key_t key, int flag); 4 // 添加消息:成功返回0,失败返回-1 5 int msgsnd(int msqid, const void *ptr, size_t size, int flag); 6 // 读取消息:成功返回消息数据的长度,失败返回-1 7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag); 8 // 控制消息队列:成功返回0,失败返回-1 9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);
复制代码

在以下两种情况下,msgget将创建一个新的消息队列:

  • 如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。
  • key参数为IPC_PRIVATE

函数msgrcv在读取消息队列时,type参数有下面几种情况:

  • type == 0,返回队列中的第一个消息;
  • type > 0,返回队列中消息类型为 type 的第一个消息;
  • type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)

3、例子

下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

msg_server.c

复制代码
 1 #include <stdio.h>
 2 #include <stdlib.h>  3 #include <sys/msg.h>  4  5 // 用于创建一个唯一的key  6 #define MSG_FILE "/etc/passwd"  7  8 // 消息结构  9 struct msg_form { 10 long mtype; 11 char mtext[256]; 12 }; 13 14 int main() 15 { 16 int msqid; 17  key_t key; 18 struct msg_form msg; 19 20 // 获取key值 21 if((key = ftok(MSG_FILE,'z')) < 0) 22  { 23 perror("ftok error"); 24 exit(1); 25  } 26 27 // 打印key值 28 printf("Message Queue - Server key is: %d.\n", key); 29 30 // 创建消息队列 31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 32  { 33 perror("msgget error"); 34 exit(1); 35  } 36 37 // 打印消息队列ID及进程ID 38 printf("My msqid is: %d.\n", msqid); 39 printf("My pid is: %d.\n", getpid()); 40 41 // 循环读取消息 42 for(;;) 43  { 44 msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息 45 printf("Server: receive msg.mtext is: %s.\n", msg.mtext); 46 printf("Server: receive msg.mtype is: %d.\n", msg.mtype); 47 48 msg.mtype = 999; // 客户端接收的消息类型 49 sprintf(msg.mtext, "hello, I'm server %d", getpid()); 50 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 51  } 52 return 0; 53 }
复制代码

msg_client.c

复制代码
 1 #include <stdio.h>
 2 #include <stdlib.h>  3 #include <sys/msg.h>  4  5 // 用于创建一个唯一的key  6 #define MSG_FILE "/etc/passwd"  7  8 // 消息结构  9 struct msg_form { 10 long mtype; 11 char mtext[256]; 12 }; 13 14 int main() 15 { 16 int msqid; 17  key_t key; 18 struct msg_form msg; 19 20 // 获取key值 21 if ((key = ftok(MSG_FILE, 'z')) < 0) 22  { 23 perror("ftok error"); 24 exit(1); 25  } 26 27 // 打印key值 28 printf("Message Queue - Client key is: %d.\n", key); 29 30 // 打开消息队列 31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 32  { 33 perror("msgget error"); 34 exit(1); 35  } 36 37 // 打印消息队列ID及进程ID 38 printf("My msqid is: %d.\n", msqid); 39 printf("My pid is: %d.\n", getpid()); 40 41 // 添加消息,类型为888 42 msg.mtype = 888; 43 sprintf(msg.mtext, "hello, I'm client %d", getpid()); 44 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 45 46 // 读取类型为777的消息 47 msgrcv(msqid, &msg, 256, 999, 0); 48 printf("Client: receive msg.mtext is: %s.\n", msg.mtext); 49 printf("Client: receive msg.mtype is: %d.\n", msg.mtype); 50 return 0; 51 }
复制代码

四、信号量

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

1、特点

  1. 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

  2. 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

  3. 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

  4. 支持信号量组。

2、原型

最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

复制代码
1 #include <sys/sem.h>
2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1 3 int semget(key_t key, int num_sems, int sem_flags); 4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1 5 int semop(int semid, struct sembuf semoparray[], size_t numops); 6 // 控制信号量的相关信息 7 int semctl(int semid, int sem_num, int cmd, ...);
复制代码

semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

semop函数中,sembuf结构的定义如下:

复制代码
1 struct sembuf 2 { 3 short sem_num; // 信号量组中对应的序号,0~sem_nums-1 4 short sem_op; // 信号量值在一次操作中的改变量 5 short sem_flg; // IPC_NOWAIT, SEM_UNDO 6 }
复制代码

其中 sem_op 是一次操作中的信号量的改变量:

  • sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

  • sem_op < 0,请求 sem_op 的绝对值的资源。

    • 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
    • 当相应的资源数不能满足请求时,这个操作与sem_flg有关。
      • sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN
      • sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
        1. 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
        2. 此信号量被删除,函数smeop出错返回EIDRM;
        3. 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
  • sem_op == 0,进程阻塞直到信号量的相应值为0:

    • 当信号量已经为0,函数立即返回。
    • 如果信号量的值不为0,则依据sem_flg决定函数动作:
      • sem_flg指定IPC_NOWAIT,则出错返回EAGAIN
      • sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
        1. 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
        2. 此信号量被删除,函数smeop出错返回EIDRM;
        3. 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

semctl函数中的命令有多种,这里就说两个常用的:

  • SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
  • IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

3、例子

复制代码
  1 #include<stdio.h>
 2 #include<stdlib.h>  3 #include<sys/sem.h>  4  5 // 联合体,用于semctl初始化  6 union semun  7 {  8 int val; /*for SETVAL*/  9 struct semid_ds *buf;  10 unsigned short *array;  11 };  12  13 // 初始化信号量  14 int init_sem(int sem_id, int value)  15 {  16  union semun tmp;  17 tmp.val = value;  18 if(semctl(sem_id, 0, SETVAL, tmp) == -1)  19  {  20 perror("Init Semaphore Error");  21 return -1;  22  }  23 return 0;  24 }  25  26 // P操作:  27 // 若信号量值为1,获取资源并将信号量值-1  28 // 若信号量值为0,进程挂起等待  29 int sem_p(int sem_id)  30 {  31 struct sembuf sbuf;  32 sbuf.sem_num = 0; /*序号*/  33 sbuf.sem_op = -1; /*P操作*/  34 sbuf.sem_flg = SEM_UNDO;  35  36 if(semop(sem_id, &sbuf, 1) == -1)  37  {  38 perror("P operation Error");  39 return -1;  40  }  41 return 0;  42 }  43  44 // V操作:  45 // 释放资源并将信号量值+1  46 // 如果有进程正在挂起等待,则唤醒它们  47 int sem_v(int sem_id)  48 {  49 struct sembuf sbuf;  50 sbuf.sem_num = 0; /*序号*/  51 sbuf.sem_op = 1; /*V操作*/  52 sbuf.sem_flg = SEM_UNDO;  53  54 if(semop(sem_id, &sbuf, 1) == -1)  55  {  56 perror("V operation Error");  57 return -1;  58  }  59 return 0;  60 }  61  62 // 删除信号量集  63 int del_sem(int sem_id)  64 {  65  union semun tmp;  66 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)  67  {  68 perror("Delete Semaphore Error"); 69 return -1; 70 } 71 return 0; 72 } 73 74 75 int main() 76 { 77 int sem_id; // 信号量集ID 78 key_t key; 79 pid_t pid; 80 81 // 获取key值 82 if((key = ftok(".", 'z')) < 0) 83 { 84 perror("ftok error"); 85 exit(1); 86 } 87 88 // 创建信号量集,其中只有一个信号量 89 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) 90 { 91 perror("semget error"); 92 exit(1); 93 } 94 95 // 初始化:初值设为0资源被占用 96 init_sem(sem_id, 0); 97 98 if((pid = fork()) == -1) 99 perror("Fork Error"); 100 else if(pid == 0) /*子进程*/ 101 { 102 sleep(2); 103 printf("Process child: pid=%d\n", getpid()); 104 sem_v(sem_id); /*释放资源*/ 105 } 106 else /*父进程*/ 107 { 108 sem_p(sem_id); /*等待资源*/ 109 printf("Process father: pid=%d\n", getpid()); 110 sem_v(sem_id); /*释放资源*/ 111 del_sem(sem_id); /*删除信号量集*/ 112 } 113 return 0; 114 }
复制代码

上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

五、共享内存

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

1、特点

  1. 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

  2. 因为多个进程可以同时操作,所以需要进行同步。

  3. 信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

2、原型

复制代码
1 #include <sys/shm.h>
2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1 3 int shmget(key_t key, size_t size, int flag); 4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1 5 void *shmat(int shm_id, const void *addr, int flag); 6 // 断开与共享内存的连接:成功返回0,失败返回-1 7 int shmdt(void *addr); 8 // 控制共享内存的相关信息:成功返回0,失败返回-1 9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
复制代码

当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

3、例子

下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

  • 共享内存用来传递数据;
  • 信号量用来同步;
  • 消息队列用来 在客户端修改了共享内存后 通知服务器读取。

server.c

复制代码
  1 #include<stdio.h>
 2 #include<stdlib.h>  3 #include<sys/shm.h> // shared memory  4 #include<sys/sem.h> // semaphore  5 #include<sys/msg.h> // message queue  6 #include<string.h> // memcpy  7  8 // 消息队列结构  9 struct msg_form {  10 long mtype;  11 char mtext;  12 };  13  14 // 联合体,用于semctl初始化  15 union semun  16 {  17 int val; /*for SETVAL*/  18 struct semid_ds *buf;  19 unsigned short *array;  20 };  21  22 // 初始化信号量  23 int init_sem(int sem_id, int value)  24 {  25  union semun tmp;  26 tmp.val = value;  27 if(semctl(sem_id, 0, SETVAL, tmp) == -1)  28  {  29 perror("Init Semaphore Error");  30 return -1;  31  }  32 return 0;  33 }  34  35 // P操作:  36 // 若信号量值为1,获取资源并将信号量值-1  37 // 若信号量值为0,进程挂起等待  38 int sem_p(int sem_id)  39 {  40 struct sembuf sbuf;  41 sbuf.sem_num = 0; /*序号*/  42 sbuf.sem_op = -1; /*P操作*/  43 sbuf.sem_flg = SEM_UNDO;  44  45 if(semop(sem_id, &sbuf, 1) == -1)  46  {  47 perror("P operation Error");  48 return -1;  49  }  50 return 0;  51 }  52  53 // V操作:  54 // 释放资源并将信号量值+1  55 // 如果有进程正在挂起等待,则唤醒它们  56 int sem_v(int sem_id)  57 {  58 struct sembuf sbuf;  59 sbuf.sem_num = 0; /*序号*/  60 sbuf.sem_op = 1; /*V操作*/  61 sbuf.sem_flg = SEM_UNDO;  62  63 if(semop(sem_id, &sbuf, 1) == -1)  64  {  65 perror("V operation Error");  66 return -1;  67  } 68 return 0; 69 } 70 71 // 删除信号量集 72 int del_sem(int sem_id) 73 { 74 union semun tmp; 75 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1) 76 { 77 perror("Delete Semaphore Error"); 78 return -1; 79 } 80 return 0; 81 } 82 83 // 创建一个信号量集 84 int creat_sem(key_t key) 85 { 86 int sem_id; 87 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) 88 { 89 perror("semget error"); 90 exit(-1); 91 } 92 init_sem(sem_id, 1); /*初值设为1资源未占用*/ 93 return sem_id; 94 } 95 96 97 int main() 98 { 99 key_t key; 100 int shmid, semid, msqid; 101 char *shm; 102 char data[] = "this is server"; 103 struct shmid_ds buf1; /*用于删除共享内存*/ 104 struct msqid_ds buf2; /*用于删除消息队列*/ 105 struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/ 106 107 // 获取key值 108 if((key = ftok(".", 'z')) < 0) 109 { 110 perror("ftok error"); 111 exit(1); 112 } 113 114 // 创建共享内存 115 if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1) 116 { 117 perror("Create Shared Memory Error"); 118 exit(1); 119 } 120 121 // 连接共享内存 122 shm = (char*)shmat(shmid, 0, 0); 123 if((int)shm == -1) 124 { 125 perror("Attach Shared Memory Error"); 126 exit(1); 127 } 128 129 130 // 创建消息队列 131 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 132 { 133 perror("msgget error"); 134 exit(1); 135 } 136 137 // 创建信号量 138 semid = creat_sem(key); 139 140 // 读数据 141 while(1) 142 { 143 msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/ 144 if(msg.mtext == 'q') /*quit - 跳出循环*/ 145 break; 146 if(msg.mtext == 'r') /*read - 读共享内存*/ 147 { 148 sem_p(semid); 149 printf("%s\n",shm); 150 sem_v(semid); 151 } 152 } 153 154 // 断开连接 155 shmdt(shm); 156 157 /*删除共享内存、消息队列、信号量*/ 158 shmctl(shmid, IPC_RMID, &buf1); 159 msgctl(msqid, IPC_RMID, &buf2); 160 del_sem(semid); 161 return 0; 162 }
复制代码

client.c

复制代码
  1 #include<stdio.h>
 2 #include<stdlib.h>  3 #include<sys/shm.h> // shared memory  4 #include<sys/sem.h> // semaphore  5 #include<sys/msg.h> // message queue  6 #include<string.h> // memcpy  7  8 // 消息队列结构  9 struct msg_form {  10 long mtype;  11 char mtext;  12 };  13  14 // 联合体,用于semctl初始化  15 union semun  16 {  17 int val; /*for SETVAL*/  18 struct semid_ds *buf;  19 unsigned short *array;  20 };  21  22 // P操作:  23 // 若信号量值为1,获取资源并将信号量值-1  24 // 若信号量值为0,进程挂起等待  25 int sem_p(int sem_id)  26 {  27 struct sembuf sbuf;  28 sbuf.sem_num = 0; /*序号*/  29 sbuf.sem_op = -1; /*P操作*/  30 sbuf.sem_flg = SEM_UNDO;  31  32 if(semop(sem_id, &sbuf, 1) == -1)  33  {  34 perror("P operation Error");  35 return -1;  36  }  37 return 0;  38 }  39  40 // V操作:  41 // 释放资源并将信号量值+1  42 // 如果有进程正在挂起等待,则唤醒它们  43 int sem_v(int sem_id)  44 {  45 struct sembuf sbuf;  46 sbuf.sem_num = 0; /*序号*/  47 sbuf.sem_op = 1; /*V操作*/  48 sbuf.sem_flg = SEM_UNDO;  49  50 if(semop(sem_id, &sbuf, 1) == -1)  51  {  52 perror("V operation Error");  53 return -1;  54  }  55 return 0;  56 }  57  58  59 int main()  60 {  61  key_t key;  62 int shmid, semid, msqid;  63 char *shm;  64 struct msg_form msg;  65 int flag = 1; /*while循环条件*/  66  67 // 获取key值  68 if((key = ftok(".", 'z')) < 0) 69 { 70 perror("ftok error"); 71 exit(1); 72 } 73 74 // 获取共享内存 75 if((shmid = shmget(key, 1024, 0)) == -1) 76 { 77 perror("shmget error"); 78 exit(1); 79 } 80 81 // 连接共享内存 82 shm = (char*)shmat(shmid, 0, 0); 83 if((int)shm == -1) 84 { 85 perror("Attach Shared Memory Error"); 86 exit(1); 87 } 88 89 // 创建消息队列 90 if ((msqid = msgget(key, 0)) == -1) 91 { 92 perror("msgget error"); 93 exit(1); 94 } 95 96 // 获取信号量 97 if((semid = semget(key, 0, 0)) == -1) 98 { 99 perror("semget error"); 100 exit(1); 101 } 102 103 // 写数据 104 printf("***************************************\n"); 105 printf("* IPC *\n"); 106 printf("* Input r to send data to server. *\n"); 107 printf("* Input q to quit. *\n"); 108 printf("***************************************\n"); 109 110 while(flag) 111 { 112 char c; 113 printf("Please input command: "); 114 scanf("%c", &c); 115 switch(c) 116 { 117 case 'r': 118 printf("Data to send: "); 119 sem_p(semid); /*访问资源*/ 120 scanf("%s", shm); 121 sem_v(semid); /*释放资源*/ 122 /*清空标准输入缓冲区*/ 123 while((c=getchar())!='\n' && c!=EOF); 124 msg.mtype = 888; 125 msg.mtext = 'r'; /*发送消息通知服务器读数据*/ 126 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 127 break; 128 case 'q': 129 msg.mtype = 888; 130 msg.mtext = 'q'; 131 msgsnd(msqid, &msg, sizeof(msg.mtext), 0); 132 flag = 0; 133 break; 134 default: 135 printf("Wrong input!\n"); 136 /*清空标准输入缓冲区*/ 137 while((c=getchar())!='\n' && c!=EOF); 138 } 139 } 140 141 // 断开连接 142 shmdt(shm); 143 144 return 0; 145 }
复制代码

注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

1 while((c=getchar())!='\n' && c!=EOF);


五种通讯方式总结

 

1.管道:速度慢,容量有限,只有父子进程能通讯    

2.FIFO:任何进程间都能通讯,但速度慢    

3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题    

4.信号量:不能传递复杂消息,只能用来同步    

5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM