Python Word2Vec使用训练好的模型生成词向量


 

# 文本文件必须是utf-8无bom格式
from gensim.models.deprecated.word2vec import Word2Vec

model = Word2Vec.load(
    './model/Word60.model')  # 3个文件放在一起:Word60.model   Word60.model.syn0.npy   Word60.model.syn1neg.npy
print("read model successful")

word_list = ['',
            '不存在的词',
            '',
            '',
            '',
            '',
            '',
            '1',
            '完成',
            '',
            '苹果',
            '香蕉',
            '词汇',
            '物理',
            '地球',
            '黑死病',
            '瘟疫',
            '', ]

for word in word_list:
    if word in model.index2word:
        vec = model[word]
        print(word,vec)
    else:
        print(word + '\t\t\t——不在词汇表里' + '\n\n')

模型文件如下:

链接:https://pan.baidu.com/s/1c7V91VcWbHPBFIfmtWGb2g 密码:mgps

如果分享失效可以留言或者邮件联系。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM