线性回归分析波士顿房价


from sklearn import datasets
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn import metrics


boston = datasets.load_boston()
x = boston.data
y = boston.target
df = pd.DataFrame(data = np.c_[x,y],columns=np.append(boston.feature_names,['MEDV']))
print(df)

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4,random_state=12345)

scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)

linreg = LinearRegression()
model = linreg.fit(x_train,y_train)

print(metrics.mean_squared_error(y_train,model.predict(x_train)))
print(metrics.r2_score(y_train,model.predict(x_train)))
print(model.coef_)
print(model.intercept_)

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM