import pandas as pd import xgboost as xgb import operator from matplotlib import pylab as plt def ceate_feature_map(features): outfile = open('xgb.fmap', 'w') i = 0 for feat in features: outfile.write('{0}\t{1}\tq\n'.format(i, feat)) i = i + 1 outfile.close() def get_data(): train = pd.read_csv("../input/train.csv") features = list(train.columns[2:]) y_train = train.Hazard for feat in train.select_dtypes(include=['object']).columns: m = train.groupby([feat])['Hazard'].mean() train[feat].replace(m,inplace=True) x_train = train[features] return features, x_train, y_train def get_data2(): from sklearn.datasets import load_iris #获取数据 iris = load_iris() x_train=pd.DataFrame(iris.data) features=["sepal_length","sepal_width","petal_length","petal_width"] x_train.columns=features y_train=pd.DataFrame(iris.target) return features, x_train, y_train #features, x_train, y_train = get_data() features, x_train, y_train = get_data2() ceate_feature_map(features) xgb_params = {"objective": "reg:linear", "eta": 0.01, "max_depth": 8, "seed": 42, "silent": 1} num_rounds = 1000 dtrain = xgb.DMatrix(x_train, label=y_train) gbdt = xgb.train(xgb_params, dtrain, num_rounds) importance = gbdt.get_fscore(fmap='xgb.fmap') importance = sorted(importance.items(), key=operator.itemgetter(1)) df = pd.DataFrame(importance, columns=['feature', 'fscore']) df['fscore'] = df['fscore'] / df['fscore'].sum() plt.figure() df.plot() df.plot(kind='barh', x='feature', y='fscore', legend=False, figsize=(16, 10)) plt.title('XGBoost Feature Importance') plt.xlabel('relative importance') plt.gcf().savefig('feature_importance_xgb.png')
根据结构分数的增益情况计算出来选择哪个特征的哪个分割点,某个特征的重要性,就是它在所有树中出现的次数之和。
参考:https://blog.csdn.net/q383700092/article/details/53698760
另外:使用xgboost,遇到一个问题

D:\Program\Python3.5\lib\site-packages\sklearn\cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
先卸载原先版本的xgboost, pip uninstall xgboost
然后下载安装新版本的xgboost,地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#xgboost
命令:pip install xgboost-0.6-cp35-none-win_amd64.whl