valueError: This solver needs samples of at least 2 classes in the data, but the data contains only one class: 0


问题描述:执行下面的代码,报错valueError: This solver needs samples of at least 2 classes in the data, but the data contains only one class: 0

原因:数据量太少

解决方案:增加训练数据量

代码如下:

filename = "test.csv"
data = pd.read_csv(filename,sep=' ')
data = pd.DataFrame(data)

x = data.iloc[:,:8].as_matrix()
y = data.iloc[:,8].as_matrix()


from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
rlr = RLR() # 建立随机逻辑回归模型,筛选变量
rlr.fit(x, y)
rlr.get_support()
print (rlr.get_support())
print ("*********************88")
print (u'有效特征:%s' % ','.join(data.columns[rlr.get_support()]))

  

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM