tensorflow 1.0 学习:参数初始化(initializer)


http://www.cnblogs.com/denny402/p/6932956.html

CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢?

https://github.com/tensorflow/tensorflow/blob/r1.1/tensorflow/python/ops/init_ops.py

所有的初始化方法都定义在tensorflow/python/ops/init_ops.py

1、tf.constant_initializer()

也可以简写为tf.Constant()

初始化为常数,这个非常有用,通常偏置项就是用它初始化的。

由它衍生出的两个初始化方法:

a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()

b、tf.ones_initializer(), 也可以简写为tf.Ones()

例:在卷积层中,将偏置项b初始化为0,则有多种写法:

复制代码
conv1 = tf.layers.conv2d(batch_images, 
                         filters=64,
                         kernel_size=7,
                         strides=2,
                         activation=tf.nn.relu,
                         kernel_initializer=tf.TruncatedNormal(stddev=0.01)
                         bias_initializer=tf.Constant(0),
                        )
复制代码

或者:

bias_initializer=tf.constant_initializer(0)

或者:

bias_initializer=tf.zeros_initializer()

或者:

bias_initializer=tf.Zeros()

 

例:如何将W初始化成拉普拉斯算子?

value = [1, 1, 1, 1, -8, 1, 1, 1,1]
init = tf.constant_initializer(value)
W= tf.get_variable('W', shape=[3, 3], initializer=init)

2、tf.truncated_normal_initializer()

或者简写为tf.TruncatedNormal()

生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。

它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。

例:

复制代码
conv1 = tf.layers.conv2d(batch_images, 
                         filters=64,
                         kernel_size=7,
                         strides=2,
                         activation=tf.nn.relu,
                         kernel_initializer=tf.TruncatedNormal(stddev=0.01)
                         bias_initializer=tf.Constant(0),
                        )
复制代码

或者:

复制代码
conv1 = tf.layers.conv2d(batch_images, 
                         filters=64,
                         kernel_size=7,
                         strides=2,
                         activation=tf.nn.relu,
                         kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
                         bias_initializer=tf.zero_initializer(),
                        )
复制代码

 

3、tf.random_normal_initializer()

可简写为 tf.RandomNormal()

生成标准正态分布的随机数,参数和truncated_normal_initializer一样。

4、random_uniform_initializer = RandomUniform()

可简写为tf.RandomUniform()

生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。

5、tf.uniform_unit_scaling_initializer()

可简写为tf.UniformUnitScaling()

和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)

max_val = math.sqrt(3 / input_size) * factor

这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]

它的分布区间为[ -max_val, max_val]

6、tf.variance_scaling_initializer()

可简写为tf.VarianceScaling()

参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)

scale: 缩放尺度(正浮点数)

mode:  "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。

distribution:分布类型,"normal"或“uniform"中的一个。

当 distribution="normal" 的时候,生成truncated normal   distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。

      如果mode = "fan_in", n为输入单元的结点数;         

      如果mode = "fan_out",n为输出单元的结点数;

       如果mode = "fan_avg",n为输入和输出单元结点数的平均值。

distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则

      limit = sqrt(3 * scale / n)

7、tf.orthogonal_initializer()

简写为tf.Orthogonal()

生成正交矩阵的随机数。

当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。

8、tf.glorot_uniform_initializer()

也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。

假设均匀分布的区间是[-limit, limit],则

limit=sqrt(6 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

9、glorot_normal_initializer()

也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.

stddev = sqrt(2 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

==================================================================================================

 

tensorflow的几种参数初始化方法

https://blog.csdn.net/liushui94/article/details/78947956

在tensorflow中,经常会遇到参数初始化问题,比如在训练自己的词向量时,需要对原始的embeddigs矩阵进行初始化,更一般的,在全连接神经网络中,每层的权值w也需要进行初始化。 
tensorlfow中应该有一下几种初始化方法

1. tf.constant_initializer() 常数初始化 2. tf.ones_initializer() 全1初始化 3. tf.zeros_initializer() 全0初始化 4. tf.random_uniform_initializer() 均匀分布初始化 5. tf.random_normal_initializer() 正态分布初始化 6. tf.truncated_normal_initializer() 截断正态分布初始化 7. tf.uniform_unit_scaling_initializer() 这种方法输入方差是常数 8. tf.variance_scaling_initializer() 自适应初始化 9. tf.orthogonal_initializer() 生成正交矩阵

 

具体的 
1、tf.constant_initializer(),它的简写是tf.Constant()

1. tf.constant_initializer(),它的简写是tf.Constant() #coding:utf-8 import numpy as np import tensorflow as tf train_inputs = [[1,2],[1,4],[3,2]] with tf.variable_scope("embedding-layer"): val = np.array([[1,2,3,4,5,6,7],[1,3,4,5,2,1,9],[0,12,3,4,5,7,8],[2,3,5,5,6,8,9],[3,1,6,1,2,3,5]]) const_init = tf.constant_initializer(val) embeddings = tf.get_variable("embed",shape=[5,7],dtype=tf.float32,initializer=const_init) embed = tf.nn.embedding_lookup(embeddings, train_inputs) #在embedding中查找train_input所对应的表示 print("embed",embed) sum_embed = tf.reduce_mean(embed,1) initall = tf.global_variables_initializer() with tf.Session() as sess: sess.run(initall) print(sess.run(embed)) print(sess.run(tf.shape(embed))) print(sess.run(sum_embed))

 

4、random_uniform_initializer = RandomUniform()

4.random_uniform_initializer = RandomUniform() 可简写为tf.RandomUniform() 生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。

 

6、tf.truncated_normal_initializer()

6. tf.truncated_normal_initializer() 简写tf.TruncatedNormal() 生成截断正态分布的随机数,这个初始化方法在tf中用得比较多。 它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。

 

8、tf.variance_scaling_initializer()


8.tf.variance_scaling_initializer() 可简写为tf.VarianceScaling() 参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32) scale: 缩放尺度(正浮点数) mode: "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。 distribution:分布类型,"normal"或“uniform"中的一个。 当 distribution="normal" 的时候,生成truncated normal distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。 如果mode = "fan_in", n为输入单元的结点数; 如果mode = "fan_out",n为输出单元的结点数; 如果mode = "fan_avg",n为输入和输出单元结点数的平均值。 当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则 limit = sqrt(3 * scale / n) 

 

截断正态分布(Truncated normal distribution)

https://blog.csdn.net/lanchunhui/article/details/61623189

Truncated normal distribution - Wikipedia

Normal Distribution 称为正态分布,也称为高斯分布,Truncated Normal Distribution一般翻译为截断正态分布,也有称为截尾正态分布。

截断正态分布是截断分布(Truncated Distribution)的一种,那么截断分布是什么?截断分布是指,限制变量xx 取值范围(scope)的一种分布。例如,限制x取值在0到50之间,即{0<x<50}。因此,根据限制条件的不同,截断分布可以分为:

  • 2.1 限制取值上限,例如,负无穷<x<50
  • 2.2 限制取值下限,例如,0<x<正无穷
  • 2.3 上限下限取值都限制,例如,0<x<50

正态分布则可视为不进行任何截断的截断正态分布,也即自变量的取值为负无穷到正无穷;

1. 概率密度函数

假设 X 原来服从正太分布,那么限制 x 的取值在(a,b)范围内之后,X 的概率密度函数,可以用下面公式计算:

 

 
f(x;μ,σ,a,b)=1σϕ(xμσ)Φ(bμσ)Φ(aμσ)f(x;μ,σ,a,b)=1σϕ(x−μσ)Φ(b−μσ)−Φ(a−μσ)

 

    • 其中 ϕ()ϕ(⋅):均值为 0,方差为 1 的标准正态分布;

       

       
      ϕ(ξ)=12π−−√exp(12ξ2)ϕ(ξ)=12πexp⁡(−12ξ2)

       

    • Φ()Φ(⋅) 为标准正态分布的累积分布函数;

    • 对其分母部分的一些简单认识, 
      • bb→∞,⇒ Φ(bμσ)=1Φ(b−μσ)=1
      • aa→−∞ ⇒ Φ(aμσ)=0


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM