八、数据拟合分析seaborn


  本文的主要目的是记住最主要的函数,具体的用法还得查API文档。 

  首先导入包:

 1 %matplotlib inline  2 import numpy as np  3 import pandas as pd  4 from scipy import stats, integrate  5 import matplotlib.pyplot as plt  6 import seaborn as sns  7 sns.set(color_codes=True)  8 np.random.seed(sum(map(ord, "distributions")))  9 # 生产参数

 

几种重要的可视化图形:

 

灰度图

 

x = np.random.normal(size=100) sns.distplot(x, kde=True)

 

  最重要的是    sns.distplot()

  

 

核密度估计

  核密度估计的步骤:

  • 每一个观测附近用一个正态分布曲线近似
  • 叠加所有观测的正太分布曲线
  • 归一化

  sns.kdeplot(x)

   

 

模型参数拟合

  

 

双变量分布

  两个相关的变量

 

散点图

  sns.jointplot(  )

  

 

六角箱图

  sns.jointplot(  )

   

 

核密度估计

  sns.jointplot(......., kind="kde") 重要的是后面的那个参数

  

 

这个图,着实有点难啊

  

  

  也不知道这个是啥

  

  还有这个,

  

 

数据集中的两两关系

  iris = sns.load_dataset("iris")

 

  

  

  

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM