通过迭代器获取数据


%pylab inline
from keras.datasets import mnist
import mxnet as mx
from mxnet import nd
from mxnet import autograd 
import random
from mxnet import gluon

(x_train, y_train), (x_test, y_test) = mnist.load_data()
num_examples = x_train.shape[0]
num_inputs = x_train.shape[1] * x_train.shape[2]
batch_size = 64

1. 自定义数据迭代器

def data_iter1(X, Y, batch_size):
    num_samples = X.shape[0]
    idx = list(range(num_samples))
    random.shuffle(idx)
    
    X = nd.array(X)
    Y = nd.array(Y)
    for i in range(0, num_examples, batch_size):
        j = nd.array(idx[i: min(i + batch_size, num_examples)])
        yield nd.take(X, j), nd.take(Y, j)

2. Gluon 迭代器

dataset = gluon.data.ArrayDataset(x_train, y_train)
data_iter = gluon.data.DataLoader(dataset, batch_size, shuffle=True)

3. 从迭代器中获取数据

for data, label in data_iter:
    print(data.shape, label.shape)
    break
(64, 28, 28) (64,)
for data, label in data_iter1(x_train, y_train, batch_size):
    print(data.shape, label.shape)
    break
(64, 28, 28) (64,)

更多精彩见:使用 迭代器 获取 Cifar 等常用数据集


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM