玄学小记.5 ~ Bluestein's algorithm


Bluestein's algorithm 算法可以在\(O (n \log n) \)的时间内完成任意长度的 DFT

 

考虑DFT,有:

\(\begin{align*} y_k &= \sum_{i = 0}^{n - 1} a_i \omega_n^{ki}\\  &= \sum_{i = 0}^{n - 1} a_i \omega_{2n}^{-(k - i)^2 +k^2+i^2}\\  &= \omega_{2n}^{k^2} \sum_{i = 0}^{n - 1} a_i \omega_{2n}^{i^2} \times \omega_{2n}^{-(k - i)^2} \end{align*}\)

 

注意到和式内部是一个卷积形式,可以用 FFT 在\(O (n \log n) \)的时间内计算。

 

因此任意长度DFT可以在\(O (n \log n) \)的时间内完成。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM