tensorflow 中 reduce_sum 理解


定义如下:

reduce_sum(
    input_tensor,
    axis=None,
    keep_dims=False,
    name=None,
    reduction_indices=None
)

reduce_sum 是 tensor 内部求和的工具。其参数中:

1. input_tensor 是要求和的 tensor

2. axis 是要求和的 rank,如果为 none,则表示所有 rank 都要仇和

3. keep_dims 求和后是否要降维

4. 这个操作的名称,可能在 graph 中 用

5. 已被淘汰的,被参数 axis 替代

 

示例如下:

x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x, 0)  # 对 tensor 的 0 级进行求和,[1,1,1] + [1,1,1] =  [2, 2, 2]
tf.reduce_sum(x, 1)  # 对 tensor 的 1 级进行仇和,[1+1+1, 1+1+1] = [3, 3]
tf.reduce_sum(x, 1, keep_dims=True)  # 对第 1 级进行求和,但不降维, [[3], [3]]
tf.reduce_sum(x, [0, 1])  # 0 级和 1级都要求和,6
tf.reduce_sum(x)  # 因为 x 只有 2 级,所以结果同上一个,6

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM