论文笔记-Sequence to Sequence Learning with Neural Networks


大体思想和RNN encoder-decoder是一样的,只是用来LSTM来实现。

paper提到三个important point:

1)encoder和decoder的LSTM是两个不同的模型

2)deep LSTM表现比shallow好,选用了4层的LSTM

3)实践中发现将输入句子reverse后再进行训练效果更好。So for example, instead of mapping the sentence a,b,c to the sentence α,β,γ, the LSTM is asked to map c,b,a to α,β,γ, where α, β, γ is the translation of a, b, c. This way, a is in close proximity to α, b is fairly close to β, and so on, a fact that makes it easy for SGD to “establish communication” between the input and the output.  


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM